ALGORITHMS FOR LAYING POINTS OPTIMALLY ON A PLANE AND A CIRCLE.

R. A. Sharipov

Abstract

Two averaging algorithms are considered which are intended for choosing an optimal plane and an optimal circle approximating a group of points in threedimensional Euclidean space.

1. Introduction.

Assume that in the three-dimensional Euclidean space \mathbb{E} we have a group of points visually resembling a circle (see Fig. 1.1). The problem is to find the best

Fig. 1.1 plane and the best circle approximating this group of points. Any plane in \mathbb{E} is given by the equation

$$
\begin{equation*}
(\mathbf{r}, \mathbf{n})=D \tag{1.1}
\end{equation*}
$$

where \mathbf{n} is the normal vector of the plane and D is some constant. The vector \mathbf{r} in (1.1) is the radius-vector of a point on that plane, while (\mathbf{r}, \mathbf{n}) is the scalar product of the vectors \mathbf{r} and \mathbf{n}.

Once a plane (1.1) is fixed and \mathbf{r} is the radius-vector of some point on it, a circle on this plane is given by the equation

$$
\begin{equation*}
|\mathbf{r}-\mathbf{R}|=\rho \tag{1.2}
\end{equation*}
$$

Here ρ is the radius of the circle (1.2) and \mathbf{R} is the radius-vector of its center. Having a group of points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ in \mathbb{E}, our goal is to design an algorithm for calculating the parameters $\mathbf{n}, D, \mathbf{R}$, and ρ in (1.1) and (1.2) thus defining a plane and a circle being optimal approximations of our points in some definite sense.

2. Defining an optimal plane.

Assume that \mathbf{n} is a unit vector, i.e $|\mathbf{n}|=1$, and assume that we have some plane defined by the equation (1.1). Then the distance from the point $\mathbf{r}[i]$ to this plane

[^0]is given by the following well-known formula:
\[

$$
\begin{equation*}
d[i]=\frac{|(\mathbf{r}[i], \mathbf{n})-D|}{|\mathbf{n}|}=|(\mathbf{r}[i], \mathbf{n})-D| \tag{2.1}
\end{equation*}
$$

\]

If we denote by d the root of mean square of the quantities (2.1), then we have

$$
\begin{equation*}
d^{2}=\frac{1}{N} \sum_{i=1}^{N} d[i]^{2}=\frac{1}{N} \sum_{i=1}^{N}|(\mathbf{r}[i], \mathbf{n})-D|^{2} \tag{2.2}
\end{equation*}
$$

Definition 2.1. A plane given by the formula (1.1) with $|\mathbf{n}|=1$ is called an optimal root mean square plane if the quantity (2.2) takes its minimal value.

It is easy to see that d^{2} in (2.2) is a function of two parameters: \mathbf{n} and D. It is a quadratic function of the parameter D. Indeed, we have

$$
\begin{equation*}
d^{2}=D^{2}-\frac{2}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n}) D+\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})^{2} \tag{2.3}
\end{equation*}
$$

The quadratic polynomial in the right hand side of (2.3) takes its minimal value if

$$
\begin{equation*}
D=\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n}) \tag{2.4}
\end{equation*}
$$

Substituting (2.4) back into the formula (2.3), we obtain

$$
\begin{equation*}
d^{2}=\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})^{2}-\left(\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})\right)^{2} \tag{2.5}
\end{equation*}
$$

In the next steps we use some mechanical analogies. If we place unit masses $m[i]=1$ at the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$, then the vector

$$
\begin{equation*}
\mathbf{r}_{\mathrm{cm}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{r}[i] \tag{2.6}
\end{equation*}
$$

is the radius-vector of the center of mass. In terms of this radius vector the formula (2.6) for D is written as follows:

$$
\begin{equation*}
D=\left(\mathbf{r}_{\mathrm{cm}}, \mathbf{n}\right) \tag{2.7}
\end{equation*}
$$

Now remember that the inertia tensor for a system of point masses $m[i]=1$ is defined as a quadratic form given by the formula:

$$
\begin{equation*}
I(\mathbf{n}, \mathbf{n})=\sum_{i=1}^{N}|\mathbf{r}[i]|^{2}|\mathbf{n}|^{2}-\sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})^{2} \tag{2.8}
\end{equation*}
$$

(see [1] for more details). We shall take the inertia tensor relative to the center of
mass. Therefore, we substitute $\mathbf{r}[i]-\mathbf{r}_{\mathrm{cm}}$ for $\mathbf{r}[i]$ into the formula (2.8). As a result we get the following expression for $I(\mathbf{n}, \mathbf{n})$:

$$
\begin{equation*}
I(\mathbf{n}, \mathbf{n})=\sum_{i=1}^{N}\left|\mathbf{r}[i]-\mathbf{r}_{\mathrm{cm}}\right|^{2}|\mathbf{n}|^{2}-\sum_{i=1}^{N}\left(\mathbf{r}[i]-\mathbf{r}_{\mathrm{cm}}, \mathbf{n}\right)^{2} . \tag{2.9}
\end{equation*}
$$

Each quadratic form in a three-dimensional Euclidean space has 3 scalar invariants. One of them is trace the invariant. In the case of the quadratic form (2.9), the trace invariant is given by the following formula:

$$
\begin{equation*}
\operatorname{tr}(I)=2 \sum_{i=1}^{N}\left|\mathbf{r}[i]-\mathbf{r}_{\mathrm{cm}}\right|^{2} . \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10), we write

$$
\begin{equation*}
I(\mathbf{n}, \mathbf{n})=\frac{\operatorname{tr}(I)}{2}|\mathbf{n}|^{2}-\sum_{i=1}^{N}\left(\mathbf{r}[i]-\mathbf{r}_{\mathrm{cm}}, \mathbf{n}\right)^{2} \tag{2.11}
\end{equation*}
$$

Taking into account the formula (2.6), we transform (2.11) as follows:

$$
\begin{equation*}
I(\mathbf{n}, \mathbf{n})=\frac{\operatorname{tr}(I)}{2}|\mathbf{n}|^{2}-\sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})^{2}+N\left(\mathbf{r}_{\mathrm{cm}}, \mathbf{n}\right)^{2} \tag{2.12}
\end{equation*}
$$

Comparing (2.12) with (2.5) and again taking into account (2.6), we get

$$
\begin{equation*}
d^{2}=\frac{\operatorname{tr}(I)}{2 N}|\mathbf{n}|^{2}-\frac{I(\mathbf{n}, \mathbf{n})}{N} \tag{2.13}
\end{equation*}
$$

The formula (2.13) means that d^{2} is a quadratic form similar to the inertia tensor. We call it the non-flatness form and denote $Q(\mathbf{n}, \mathbf{n})$:

$$
\begin{gather*}
Q(\mathbf{n}, \mathbf{n})=\frac{\operatorname{tr}(I)}{2 N}|\mathbf{n}|^{2}-\frac{I(\mathbf{n}, \mathbf{n})}{N}= \\
=\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})^{2}-\left(\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{n})\right)^{2} . \tag{2.14}
\end{gather*}
$$

Like the inertia form (2.9), the non-flatness form (2.14) is positive, i. e.

$$
Q(\mathbf{n}, \mathbf{n}) \geqslant 0 \text { for } \mathbf{n} \neq 0
$$

If the inertia tensor is brought to its primary axes, i. e. if it is diagonalized in some orthonormal basis, then the form (2.14) diagonalizes in the same basis.

Theorem 2.1. A plane is an optimal root mean square plane for a group of points if and only if it passes through the center of mass of these points and if its normal vector \mathbf{n} is directed along a primary axis of the non-flatness form Q of these points corresponding to its minimal eigenvalue.

The proof is derived immediately from the definition 2.1 due to the formula (2.7) and the formula $d^{2}=Q(\mathbf{n}, \mathbf{n})$.
Theorem 2.2. An optimal root mean square plane for a group of points is unique if and only if the minimal eigenvalue $\lambda_{\min }$ of their non-flatness form Q is distinct from two other eigenvalues, i. e. $\lambda_{\min }=\lambda_{1}<\lambda_{2}$ and $\lambda_{\min }=\lambda_{1}<\lambda_{3}$.

3. Defining an optimal circle.

Having found an optimal root mean square plane for the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$, we can replace them by their projections onto this plane:

$$
\begin{equation*}
\mathbf{r}[i] \mapsto \mathbf{r}[i]-((\mathbf{r}[i], \mathbf{n})-D) \mathbf{n} . \tag{3.1}
\end{equation*}
$$

Our next goal is to find an optimal circle approximating a group of points lying on some plane (1.1). Let $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ be their radius-vectors. The deflection of the point $\mathbf{r}[i]$ from the circle (1.2) is characterized by the following quantity:

$$
\begin{equation*}
d[i]=\| \mathbf{r}[i]-\left.\mathbf{R}\right|^{2}-\rho^{2} \mid \tag{3.2}
\end{equation*}
$$

Like in the case of (2.1), we denote by d the root mean square of the quantities (3.2). Then we get the following formula:

$$
\begin{equation*}
d^{2}=\frac{1}{N} \sum_{i=1}^{N} d[i]^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(|\mathbf{r}[i]-\mathbf{R}|^{2}-\rho^{2}\right)^{2} \tag{3.3}
\end{equation*}
$$

The quantity d^{2} in (3.3) is a function of two parameters: \mathbf{R} and ρ^{2}. With respect to ρ^{2} it is a quadratic polynomial. Indeed, we have

$$
\begin{equation*}
d^{2}=\left(\rho^{2}\right)^{2}-\frac{2 \rho^{2}}{N} \sum_{i=1}^{N}|\mathbf{r}[i]-\mathbf{R}|^{2}+\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]-\mathbf{R}|^{4} \tag{3.4}
\end{equation*}
$$

Being a quadratic polynomial of ρ^{2}, the quantity d^{2} takes its minimal value for

$$
\begin{equation*}
\rho^{2}=\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]-\mathbf{R}|^{2} \tag{3.5}
\end{equation*}
$$

Substituting (3.5) back into the formula (3.4), we derive

$$
\begin{equation*}
d^{2}=\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]-\mathbf{R}|^{4}-\left(\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]-\mathbf{R}|^{2}\right)^{2} \tag{3.6}
\end{equation*}
$$

Upon expanding the expression in the right hand side of the formula (3.6) we need to perform some simple, but rather huge calculations. As result we get

$$
d^{2}=\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{4}-\left(\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{2}\right)^{2}-\frac{4}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{2}(\mathbf{r}[i], \mathbf{R})+
$$

$$
+4\left(\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{2}\right)\left(\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{R})\right)+\frac{4}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{R})^{2}-4\left(\frac{1}{N} \sum_{i=1}^{N}(\mathbf{r}[i], \mathbf{R})\right)^{2}
$$

We see that the above expression is not higher than quadratic with respect to R. The fourth order terms and the cubic terms are canceled. Note also that the quadratic part of the above expression is determined by the form Q considered in previous section. For this reason we write d^{2} as

$$
\begin{equation*}
d^{2}=4 Q(\mathbf{R}, \mathbf{R})-4(\mathbf{L}, \mathbf{R})+M \tag{3.7}
\end{equation*}
$$

The vector \mathbf{L} and the scalar M in (3.7) are given by the following formulas:

$$
\begin{align*}
\quad \mathbf{L} & =\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{2}\left(\mathbf{r}[i]-\mathbf{r}_{\mathrm{cm}}\right), \tag{3.8}\\
M & =\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{4}-\left(\frac{1}{N} \sum_{i=1}^{N}|\mathbf{r}[i]|^{2}\right)^{2} . \tag{3.9}
\end{align*}
$$

The quantity d^{2} takes its minimal value if and only if \mathbf{R} satisfies the equation

$$
\begin{equation*}
2 \mathbf{Q}(\mathbf{R})=\mathbf{L}, \tag{3.10}
\end{equation*}
$$

where \mathbf{Q} is the symmetric linear operator associated with the form Q through the standard Euclidean scalar product. The equality

$$
(\mathbf{Q}(\mathbf{X}), \mathbf{Y})=Q(\mathbf{X}, \mathbf{Y})
$$

which should be fulfilled for arbitrary two vectors \mathbf{X} and \mathbf{Y}, is a formal definition of the operator \mathbf{Q} (see [2] for more details).

In general case the operator \mathbf{Q} is non-degenerate. Hence, \mathbf{R} does exist and uniquely fixed by the equation (3.10). However, if the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ are laid onto the plane (1.1) by means of the projection procedure (3.1), then the operator \mathbf{Q} is degenerate. Moreover, one can prove the following theorem.

Theorem 3.1. The non-flatness form Q and its associated operator \mathbf{Q} are degenerate if and only if the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ lie on some plane.

In this flat case provided by the theorem 3.1 one should move the origin to that plane where the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ lie and treat their radius-vectors as two-dimensional vectors. Then, using (2.14), (3.8), and (3.9), one should rebuild the two-dimensional versions of the non-flatness form Q, its associated operator \mathbf{Q} and the parameters \mathbf{L} and M. If again the two-dimensional non-flatness form is degenerate, this case is described by the following theorem.
Theorem 3.2. The two-dimensional non-flatness form Q and its associated operator \mathbf{Q} are degenerate if and only if all of the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ lie on some straight line.

In this very special case we say that straight line approximation for the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ is more preferable than the circular approximation. Note that the same decision can be made in some cases even if the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ do not
lie on one straight line exactly. If two eigenvalues of the three-dimensional nonflatness form Q are sufficiently small, i. e. if they both are much smaller than the third eigenvalue of this form, then we can say that

$$
\lambda_{\min } \approx \lambda_{1}, \quad \quad \lambda_{\min } \approx \lambda_{2}
$$

Taking two eigenvectors \mathbf{n}_{1} and \mathbf{n}_{2} of the form Q corresponding to the eigenvalues λ_{1} and λ_{2}, we define two planes

$$
\begin{equation*}
\left(\mathbf{r}, \mathbf{n}_{1}\right)=D_{1}, \quad\left(\mathbf{r}, \mathbf{n}_{2}\right)=D_{2} \tag{3.11}
\end{equation*}
$$

The constants D_{1} and D_{2} in (3.11) are given by the formula (2.7). The intersection of two planes (3.11) yields a straight line being the optimal straight line approximation for the points $\mathbf{r}[1], \ldots, \mathbf{r}[N]$ in this case.

4. Acknowledgments.

The idea of this paper was induced by some technological problems suggested to me by O. V. Ageev. I am grateful to him for that.

References

1. Landau L. D., Lifshits E. M., Course of theoretical physics, Vol. I, Mechanics, Nauka publishers, Moscow, 1988.
2. Sharipov R. A, Course of linear algebra and multidimensional geometry, Bashkir State University, Ufa, 1996; see also math.HO/0405323.
```
5 \text { Rabochaya street, 450003 Ufa, Russia}
Cell Phone: +7-(917)-476-93-48
E-mail address: r-sharipov@mail.ru
            R_Sharipov@ic.bashedu.ru
URL: http://www.geocities.com/r-sharipov
    http://www.freetextbooks.boom.ru/index.html
```


[^0]: 2000 Mathematics Subject Classification. 62H35, 62P30, 68W25.

