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COMPARISON OF TWO FORMULAS FOR METRIC

CONNECTIONS IN THE BUNDLE OF DIRAC SPINORS.

R. A. Sharipov

Abstract. Two explicit formulas for metric connections in the bundle of Dirac
spinors are studied. Their equivalence is proved. The explicit formula relating the
spinor curvature tensor with the Riemann curvature tensor is rederived.

1. Basic notations and definitions.

Dirac spinors play crucial role in modern particle physics. However, this crucial
application of Dirac spinors is based mostly on the special relativity, where the base
manifold M is the flat Minkowski space. Passing to the general relativity, we get a
little bit more complicated theory of spinors.

Let M be a space-time manifold of the general relativity. It is a four-dimensional
orientable manifold equipped with a pseudo-Euclidean Minkowski-type metric g

and with a polarization. The polarization of M is responsible for distinguishing the
Future light cone from the Past light cone at each point p ∈ M (see [1] for more
details). Let’s denote by DM the bundle of Dirac spinors over M (see [2] and [3]
for detailed description). In addition to the metric tensor g inherited from M , the
Dirac bundle DM is equipped with four other basic spin-tensorial fields:

Symbol Name Spin-tensorial
type

g Metric tensor (0, 0|0, 0|0, 2)

d Skew-symmetric metric tensor (0, 2|0, 0|0, 0)

H Chirality operator (1, 1|0, 0|0, 0)

D Dirac form (0, 1|0, 1|0, 0)

γ Dirac γ-field (1, 1|0, 0|1, 0)

(1.1)

The spin-tensorial type in the above table (1.1) reflects the number of indices in
coordinate representation of fields. The first two numbers are the numbers of upper
and lower spinor indices, the second two numbers are the numbers of upper and
lower conjugate spinor indices, and the last two numbers are the numbers of upper
and lower tensorial indices (they are also called spacial indices). The metric tensor
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g is interpreted as a spin-tensorial field of the type (0, 0|0, 0|0, 2), i. e. it has no
spinor indices and no conjugate spinor indices, but has two lower spacial indices.

The Dirac bundle is a complex bundle over a real manifold. For this reason spin-
tensorial bundles produced from DM are equipped with the involution of complex
conjugation τ which exchanges spinor and conjugate spinor indices:

τ
−−−−→Dα

β D̄
ν
γT

m
n M Dν

γD̄
α
βT

m
n M.←−−−−

τ
(1.2)

Two fields g and D in (1.1) are real fields, i. e. they are invariant with respect to
the involution of complex conjugation (1.2):

τ(g) = g, τ(D) = D.

Other fields d, H, and γ in (1.1) are not real fields. For them we denote

γ̄ = τ(γ), d̄ = τ(d), H̄ = τ(H).

Definition 1.1. A metric connection (Γ,A, Ā) in DM is a spinor connection which
is real in the sense of the involution (1.2) and concordant with d and γ, i. e.

τ ◦∇ = ∇ ◦ τ, ∇d = 0, ∇γ = 0. (1.3)

Note that we use three symbols (Γ,A, Ā) for denoting a spinor connection. It is
because we use three different types of connection components for three groups of
indices when writing covariant derivatives in coordinates:

∇iX
k = LΥi

Xk +

3
∑

j=0

Γk
ij X

j,

∇iXk = LΥi
Xk −

3
∑

j=0

Γj
ik Xj,























for spacial indices, (1.4)

∇iψ
a = LΥi

ψa +

4
∑

b=1

Aa
ib ψ

b,

∇iψa = LΥi
ψa −

4
∑

b=1

Ab
ia ψb,























for spinor indices, (1.5)

∇iψ
ā = LΥi

ψā +

4
∑

b̄=1

Āā
i b̄
ψb̄,

∇iψā = LΥi
ψā −

4
∑

b̄=1

Āb̄
i ā ψb̄,























for conjugate

spinor indices.
(1.6)

In the case of a field of some mixed spin-tensorial type the formulas (1.4), (1.5),
and (1.6) are combined (see formula (7.10) in [3]).

Note that in (1.4), (1.5), and (1.6) we have no partial derivatives. They are
replaced by the derivatives LΥi

along four vector fields Υ0, Υ1, Υ2, Υ3 forming
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some local frame of the tangent bundle TM . The spacial indices i, j, and k in
(1.4), (1.5), and (1.6) are also relative to this frame. The spinor and conjugate
spinor indices a, b, ā, and b̄ in these formulas are relative to some spinor frame
Ψ1, Ψ2, Ψ3, Ψ4 of the Dirac bundle DM . Local frames of the tangent bundle
TM are generalizations of local coordinates (they are also called non-holonomic
coordinates). Indeed, once some local coordinates x0, x1, x2, x3 in M are given,
we have their associated frame of coordinate vector fields:

E0 =
∂

∂x0
, E1 =

∂

∂x1
, E2 =

∂

∂x2
, E3 =

∂

∂x3
. (1.7)

The local coordinates x0, x1, x2, x3 are called holonomic, since their associated
vector fields (1.7) commute with each other:

[Ei,Ej ] = 0. (1.8)

Unlike (1.8), the vector fields Υ0, Υ1, Υ2, Υ3 of a general (non-holonomic) frame
do not commute. In this case we have

[Υi,Υj ] =

3
∑

k=0

c k
ij Υk. (1.9)

As for spinor frames, they are always non-holonomic since they are composed by
spinor fields, while the commutator of spinor fields is not defined at all.

Theorem 1.1. Any metric connection (Γ,A, Ā) is concordant with all of the basic

spin tensorial fields g, d, H, D, and γ listed in the table (1.1).

The theorem 1.1 means that from (1.3) it follows that

∇g = 0, ∇H = 0, ∇D = 0. (1.10)

Applying the first identity (1.3) to (1.10) and to other identities (1.3), we derive

∇γ̄ = 0, ∇d̄ = 0, ∇H̄ = 0.

The general relativity (the Einstein’s theory of gravity) is a theory with zero torsion.
Exactly for this case we have the following theorem.

Theorem 1.2. There is a unique metric connection (Γ,A, Ā) of the bundle of

Dirac spinors DM whose torsion is zero.

The metric connection with zero torsion is called the Levi-Civita connection. The
proof of both theorems 1.1 and 1.2 can be found in [3]. The first identity (1.10)
means that Γk

ij in (1.4) are the components of the standard Levi-Civita connection.

In a holonomic frame (1.7) they are given by the standard formula

Γk
ij =

3
∑

r=0

gkr

2

(

∂grj

∂xi
+
∂gir

∂xj
−
∂gij

∂xr

)

. (1.11)
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The quantities (1.11) are symmetric, i. e. Γk
ij = Γk

j i. In the case of a non-holonomic
frame Υ0, Υ1, Υ2, Υ3 the components of the Levi-Civita connection are not sym-
metric: Γk

ij − Γk
j i = −c k

ij with c k
ij taken from (1.9). They are given by the formula

Γk
ij =

3
∑

r=0

gkr

2

(

LΥi
(grj) + LΥj

(gir)− LΥr
(gij)

)

−

−
c k
ij

2
+

3
∑

r=0

3
∑

s=0

c s
ir

2
gkr gsj +

3
∑

r=0

3
∑

s=0

c s
jr

2
gkr gsi.

(1.12)

Now let’s proceed to the quantities Aa
ib and Āā

i b̄
in the formulas (1.5) and (1.6).

Due to the theorem 1.2 for a torsion-free connection they are uniquely determined
by the equalities (1.3). From the first equality (1.3) one easily derives that Aa

ib and
Āā

i b̄
are related to each other by virtue of the complex conjugation:

Āā
i b̄

= Aā
i b̄. (1.13)

In one of my previous papers I have derived the following formula for the spinor
components Aa

ib of the metric connection (see formula (8.34) in [3]):

Aa
ib =

4
∑

α=1

4
∑

β=1

LΥi
(

•

dαβ)
•

dβα
◦

Ha
b + LΥi

(
◦

dαβ)
◦

dβα
•

Ha
b

4
+

+
3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

4
−

−
3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γr
im

•◦

γ α
br g

mn ◦•

γ a
αn + Γr

im

◦•

γ α
br g

mn •◦

γ a
αn

4
.

(1.14)

However, in some other papers there are much more simple formulas for spinor
connections. I choose the formula (5) from [4] for comparing it with (1.14). Being
transformed to our notations, this formula looks like

Aa
ib =

1

4

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γr
im γα

bn g
mn γa

αr. (1.15)

Our main goal is to compare the formulas (1.14) and (1.15). Then we calculate the
curvature tensors associated with these formulas.

2. Comparison of the formulas (1.14) and (1.15).

The formula (1.15) has no differentiations at all. This means that it is written
for special frames where the components of the basic fields d and γ are constants.
For this reason we could omit the terms with derivatives LΥi

in (1.14) for the
comparison purposes. However, we shall not do it. We shall transform the formula
(1.14) to a form similar to (1.15) preserving all of its terms. As a result in each
step we shall have a formula applicable for arbitrary frames.

Another feature of the formula (1.14), in contrast to (1.15), is that it uses special
notations with circles and bullets. These notations were introduced in [3]. Now we
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need to reproduce them. Remember that the chirality operator H is a diagonalizable
operator with two eigenvalues λ1 = λ2 = 1 and two other eigenvalues λ3 = λ4 = −1.
Therefore, H2 = 1. Due to this equality one can define two projection operators

•

H =
1 + H

2
,

◦

H =
1−H

2
(2.1)

(see (8.1) in [3]). The components
◦

Ha
b and

•

Ha
b of these two projection operators

(2.1) are used in the formula (1.14). Other special symbols in (1.14) are defined as

•

dβα =

4
∑

a=1

4
∑

b=1

•

H
β
b dba

•

Hα
a ,

◦

dβα =

4
∑

a=1

4
∑

b=1

◦

H
β
b dba

◦

Hα
a ,

(2.2)
•

dαβ =

4
∑

a=1

4
∑

b=1

•

Ha
α dab

•

Hb
β ,

◦

dαβ =

4
∑

a=1

4
∑

b=1

◦

Ha
α dab

◦

Hb
β

(see (8.19) in [3]). Here dab and dba are the components of two mutually inverse
skew-symmetric matrices. The first of them represents the spinor metric tensor d

(see table (1.1)) and the second one corresponds to its dual metric tensor which is
denoted by the same symbol d. Similarly, we have

◦•

γ α
βm =

4
∑

a=1

4
∑

b=1

◦

Hα
a

•

Hb
β γ

a
bm,

•◦

γ α
βm =

4
∑

a=1

4
∑

b=1

•

Hα
a

◦

Hb
β γ

a
bm (2.3)

(see (8.5) in [3]). The projection operators (2.1) obey some commutation and
anticommutation relationships with d and γ:

4
∑

b=1

dαb

•

Hb
β =

4
∑

a=1

•

Ha
α daβ ,

4
∑

a=1

dβa
•

Hα
a =

4
∑

b=1

•

H
β
b d

bα,

(2.4)
4
∑

b=1

dαb

◦

Hb
β =

4
∑

a=1

◦

Ha
α daβ ,

4
∑

a=1

dβa
◦

Hα
a =

4
∑

b=1

◦

H
β
b d

bα,

4
∑

b=1

γ α
bm

•

Hb
β =

4
∑

a=1

◦

Hα
a γ

a
βm,

4
∑

b=1

γ α
bm

◦

Hb
β =

4
∑

a=1

•

Hα
a γ

a
βm (2.5)

(see (6.16) and (6.17) in [3]). Due to the relationships (2.4) and (2.5) the formulas
(2.2) and (2.3) are written as follows:

•

dαβ =
4
∑

b=1

dαb

•

Hb
β =

4
∑

a=1

•

Ha
α daβ ,

•

dβα =
4
∑

a=1

dβa
•

Hα
a =

4
∑

b=1

•

H
β
b d

bα,

(2.6)

◦

dαβ =

4
∑

b=1

dαb

◦

Hb
β =

4
∑

a=1

◦

Ha
α daβ ,

◦

dβα =

4
∑

a=1

dβa
◦

Hα
a =

4
∑

b=1

◦

H
β
b d

bα,

(2.7)



6 R. A. SHARIPOV

◦•

γ α
βm =

4
∑

b=1

γ α
bm

•

Hb
β =

4
∑

a=1

◦

Hα
a γ

a
βm,

•◦

γ α
βm =

4
∑

b=1

γ α
bm

◦

Hb
β =

4
∑

a=1

•

Hα
a γ

a
βm.

(2.8)

Now we apply (2.6), (2.7), and (2.8) for to transform the formula (1.14). Using the
formulas (2.8), we derive the following relationship:

4
∑

α=1

(

•◦

γ α
br

◦•

γ a
αn +

◦•

γ α
br

•◦

γ a
αn

)

=
4
∑

α=1

(

◦•

γ a
αn

•◦

γ α
br +

•◦

γ a
αn

◦•

γ α
br

)

=

=
4
∑

α=1

4
∑

c=1

4
∑

d=1

(

γ a
cn

•

Hc
α

•

Hα
d γ

d
br + γ a

cn

◦

Hc
α

◦

Hα
d γ

d
br

)

.

(2.9)

Remember that
•

H and
◦

H are projection operators complementary to each other,

i. e.
•

H2 =
•

H,
◦

H2 =
◦

H, and
•

H +
◦

H = 1. Therefore, we have

4
∑

α=1

(

•

Hc
α

•

Hα
d +

◦

Hc
α

◦

Hα
d

)

=
•

Hc
d +

◦

Hc
d = δc

d. (2.10)

Applying this formula (2.10) to (2.9) we derive

4
∑

α=1

(

•◦

γ α
br

◦•

γ a
αn +

◦•

γ α
br

•◦

γ a
αn

)

=

4
∑

c=1

γ a
cn γ

c
br. (2.11)

Using the formula (2.11), we can transform the last term of (1.14) as follows:

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γr
im

•◦

γ α
br g

mn ◦•

γ a
αn + Γr

im

◦•

γ α
br g

mn •◦

γ a
αn

4
=

=

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

c=1

Γr
im γ c

br g
mn γ a

cn

4
.

(2.12)

Now let’s proceed to the second term in the right hand side of the formula (1.14).
Applying the formulas (2.8), we derive

3
∑

m=0

3
∑

n=0

4
∑

α=1

(

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

)

=

=
3
∑

m=0

3
∑

n=0

4
∑

α=1

4
∑

c=1

4
∑

d=1

γ a
cn

(

•

Hc
α LΥi

(
•

Hα
d γ

d
bm) +

◦

Hc
α LΥi

(
◦

Hα
d γ

d
bm)
)

gmn =

=

3
∑

m=0

3
∑

n=0

4
∑

α=1

4
∑

c=1

4
∑

d=1

γ a
cn

(

•

Hc
α LΥi

(
•

Hα
d ) +

◦

Hc
α LΥi

(
◦

Hα
d )
)

gmn γ d
bm +

+

3
∑

m=0

3
∑

n=0

4
∑

α=1

4
∑

c=1

4
∑

d=1

γ a
cn

(

•

Hc
α

•

Hα
d +

◦

Hc
α

◦

Hα
d

)

LΥi
(γ d

bm) gmn.
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In order to continue our calculations we need the identity (6.21) from [3]:

3
∑

m=0

3
∑

n=0

γ d
bm gmn γ a

cn = δd
c δ

a
b −H

d
c Ha

b +

+ dda dbc −
4
∑

r=1

4
∑

s=1

Hd
r d

ra dbs H
s
c .

(2.13)

Applying (2.10) and (2.13) to the above formula, we derive

3
∑

m=0

3
∑

n=0

4
∑

α=1

(

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

)

=

=
3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm) gmn γ a
αn +

=

4
∑

α=1

4
∑

c=1

4
∑

d=1

•

Hc
α LΥi

(
•

Hα
d )

(

δd
c δ

a
b −H

d
c Ha

b +

+ dda dbc −
4
∑

r=1

4
∑

s=1

Hd
r d

ra dbsH
s
c

)

+

+
4
∑

α=1

4
∑

c=1

4
∑

d=1

◦

Hc
α LΥi

(
◦

Hα
d )

(

δd
c δ

a
b −H

d
c Ha

b +

+ dda dbc −
4
∑

r=1

4
∑

s=1

Hd
r d

ra dbs H
s
c

)

.

Now remember that
•

H ◦ H = H ◦

•

H =
•

H and
◦

H ◦ H = H ◦

◦

H = −
◦

H. These formulas
are easily derived from (2.1). Applying them, we find

3
∑

m=0

3
∑

n=0

4
∑

α=1

(

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

)

=

=
3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm) gmn γ a
αn +

4
∑

α=1

4
∑

d=1

•

Hd
α LΥi

(
•

Hα
d ) (δa

b −H
a
b ) +

+

4
∑

α=1

4
∑

c=1

4
∑

d=1

dbc

•

Hc
α LΥi

(
•

Hα
d )

4
∑

r=1

(

δd
r −H

d
r

)

dra +

4
∑

α=1

4
∑

d=1

◦

Hd
α LΥi

(
◦

Hα
d )×

× (δa
b +Ha

b ) +

4
∑

α=1

4
∑

c=1

4
∑

d=1

dbc

◦

Hc
α LΥi

(
◦

Hα
d )

4
∑

r=1

(

δd
r +Hd

r

)

dra.

Note that δa
b −H

a
b = 2

◦

Ha
b and δa

b + Ha
b = 2

•

Ha
b . Similarly, δd

r − H
d
r = 2

◦

Hd
r and

δd
r +Hd

r = 2
•

Hd
r . Moreover, we apply the following obvious formula

LΥi
(γ α

bm) gmn = LΥi
(γ α

bm gmn)− γ α
bm LΥi

(gmn).
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Therefore, the above formula is transformed to the following one:

3
∑

m=0

3
∑

n=0

4
∑

α=1

(

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

)

=

=

3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm gmn) γ a
αn −

3
∑

m=0

3
∑

n=0

4
∑

α=1

γ α
bm LΥi

(gmn) γ a
αn +

+ 2

4
∑

α=1

4
∑

d=1

•

Hd
α LΥi

(
•

Hα
d )

◦

Ha
b + 2

4
∑

α=1

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc

•

Hc
α LΥi

(
•

Hα
d )

◦

Hd
r d

ra +

+ 2

4
∑

α=1

4
∑

d=1

◦

Hd
α LΥi

(
◦

Hα
d )

•

Ha
b + 2

4
∑

α=1

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc

◦

Hc
α LΥi

(
◦

Hα
d )

•

Hd
r d

ra.

For the derivative LΥi
(gmn) in the above formula we write

LΥi
(gmn) = −

3
∑

s=0

Γm
is g

sn −

3
∑

s=0

Γn
is g

ms. (2.14)

This formula is easily derived from ∇ig
mn = 0. Applying (2.14), we get

3
∑

m=0

3
∑

n=0

4
∑

α=1

(

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

)

=

=

3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm gmn) γ a
αn +

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γm

is g
sn γ a

αn +

+

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γn

is g
ms γ a

αn + 2

4
∑

α=1

4
∑

d=1

•

Hd
α LΥi

(
•

Hα
d )

◦

Ha
b +

+ 2

4
∑

α=1

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc

•

Hc
α LΥi

(
•

Hα
d )

◦

Hd
r d

ra + 2

4
∑

α=1

4
∑

d=1

◦

Hd
α×

×LΥi
(

◦

Hα
d )

•

Ha
b + 2

4
∑

α=1

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc

◦

Hc
α LΥi

(
◦

Hα
d )

•

Hd
r d

ra.

(2.15)

The last step in our calculations is to transform the first term in the right hand
side of (1.14). Applying (2.6) and (2.7) to it, we get

4
∑

α=1

4
∑

β=1

(

LΥi
(

•

dαβ)
•

dβα
◦

Ha
b + LΥi

(
◦

dαβ)
◦

dβα
•

Ha
b

)

=

=
4
∑

α=1

4
∑

β=1

4
∑

c=1

4
∑

d=1

LΥi
(

•

Hc
α dcβ) dβd

•

Hα
d

◦

Ha
b +

4
∑

α=1

4
∑

β=1

4
∑

c=1

4
∑

d=1

LΥi
(

◦

Hc
α dcβ)×

× dβd
◦

Hα
d

•

Ha
b =

4
∑

α=1

4
∑

d=1

LΥi
(

•

Hd
α)

•

Hα
d

◦

Ha
b +

4
∑

α=1

4
∑

β=1

4
∑

d=1

LΥi
(dαβ) dβd

•

Hα
d ×

×
◦

Ha
b +

4
∑

α=1

4
∑

d=1

LΥi
(

◦

Hd
α)

◦

Hα
d

•

Ha
b +

4
∑

α=1

4
∑

β=1

4
∑

d=1

LΥi
(dαβ) dβd

◦

Hα
d

•

Ha
b .
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Some terms in the above sum are zero. Indeed, we have

4
∑

α=1

4
∑

d=1

LΥi
(

•

Hd
α)

•

Hα
d =

1

4

4
∑

α=1

4
∑

d=1

LΥi
(Hd

α) (δα
d +Hα

d ) =

=
1

4
tr(LΥi

(H)) +
1

4
tr(LΥi

(H) ◦ H) =
1

4
LΥi

(trH) +
1

8
LΥi

(trH2).

But we know that trH = 0 and H2 = 1, which means trH2 = 4. Therefore, we
have the following two relationships:

4
∑

α=1

4
∑

d=1

LΥi
(

•

Hd
α)

•

Hα
d = 0,

4
∑

α=1

4
∑

d=1

LΥi
(

◦

Hd
α)

◦

Hα
d = 0.

(2.16)

The second relationship (2.16) is derived in a quite similar way as the first one.
Applying these relationships, we continue our previous calculations and obtain

4
∑

α=1

4
∑

β=1

LΥi
(

•

dαβ)
•

dβα
◦

Ha
b + LΥi

(
◦

dαβ)
◦

dβα
•

Ha
b =

=

4
∑

α=1

4
∑

β=1

4
∑

d=1

(

LΥi
(dαβ) dβd

•

Hα
d

◦

Ha
b + LΥi

(dαβ) dβd
◦

Hα
d

•

Ha
b

)

.

(2.17)

Applying (2.16) to (2.15) we can simplify it either:

3
∑

m=0

3
∑

n=0

4
∑

α=1

(

LΥi
(
•◦

γ α
bm) gmn ◦•

γ a
αn + LΥi

(
◦•

γ α
bm) gmn •◦

γ a
αn

)

=

=

3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm gmn) γ a
αn +

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γm

is g
sn γ a

αn +

+

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γn

is g
ms γ a

αn + 2

4
∑

α=1

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc

•

Hc
α×

×LΥi
(

•

Hα
d )

◦

Hd
r d

ra + 2

4
∑

α=1

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc

◦

Hc
α LΥi

(
◦

Hα
d )

•

Hd
r d

ra.

(2.18)

Moreover, note that
•

H and
◦

H are projectors, i. e.
•

H ◦

•

H =
•

H and
◦

H ◦

◦

H =
◦

H.
Differentiating these formulas, we derive the following identities:

4
∑

α=1

4
∑

d=1

•

Hc
α LΥi

(
•

Hα
d )

◦

Hd
r =

4
∑

α=1

•

Hc
α LΥi

(
•

Hα
r ) =

4
∑

d=1

LΥi
(

•

Hc
d)

◦

Hd
r ,

4
∑

α=1

4
∑

d=1

◦

Hc
α LΥi

(
◦

Hα
d )

•

Hd
r =

4
∑

α=1

◦

Hc
α LΥi

(
◦

Hα
r ) =

4
∑

d=1

LΥi
(

◦

Hc
d)

•

Hd
r .

(2.19)



10 R. A. SHARIPOV

These formulas will be used below. Now we substitute (2.17), (2.18), and (2.12)
into the formula (1.14). Meanwhile we apply (2.19) to (2.18). As a result we get

Aa
ib =

4
∑

α=1

4
∑

β=1

4
∑

d=1

LΥi
(dαβ) dβd

•

Hα
d

◦

Ha
b + LΥi

(dαβ) dβd
◦

Hα
d

•

Ha
b

4
+

+

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc LΥi
(

•

Hc
d)

◦

Hd
r d

ra

2
+

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc LΥi
(

◦

Hc
d)

•

Hd
r d

ra

2
+

+

3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm gmn) γ a
αn

4
+

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γn

is g
ms γ a

αn

4
.

(2.20)

Note that the last term in (2.20) coincides with (1.15), other terms contain deriva-
tives LΥi

. Due to this observation we can formulate the following result.

Theorem 2.1. The formulas (1.14) and (1.15) represent the same metric con-

nection for Dirac spinors. The formula (1.15) applies to special frame where the

components of the basic fields listed in the table (1.1) are constants. The formula

(1.14) is a general formula applicable to all frames. It can be written as (2.20).

3. Further transformations of the formula (1.14).

The third line in the formula (2.20) has no symbols with circle and bullet. How-
ever, previous two lines still have such symbols. We use the formulas (2.1) to remove
bullets and circles from the formula (2.20) at all:

•

Hα
d

◦

Ha
b +

◦

Hα
d

•

Ha
b =

1

2
(δα

d +Hα
d )

◦

Ha
b +

1

2
(δα

d −H
α
d )

•

Ha
b =

=
1

2
δα
d (

◦

Ha
b +

•

Ha
b ) +

1

2
Hα

d (
◦

Ha
b −

•

Ha
b ) =

1

2
δα
d δ

a
b −

1

2
Hα

d H
a
b ,

(3.1)

LΥi
(

•

Hc
d)

◦

Hd
r + LΥi

(
◦

Hc
d)

•

Hd
r =

1

2
LΥi

(δc
d +Hc

d)
◦

Hd
r +

+
1

2
LΥi

(δc
d −H

c
d)

•

Hd
r =

1

2
LΥi

(Hc
d) (

◦

Hd
r −

•

Hd
r) = −

1

2
LΥi

(Hc
d)Hd

r .

(3.2)

Applying (3.1) and (3.2) to (2.20), we obtain

Aa
ib =

4
∑

α=1

4
∑

β=1

LΥi
(dαβ) dβα

8
δa
b −

4
∑

α=1

4
∑

β=1

4
∑

d=1

LΥi
(dαβ) dβd Hα

d

8
Ha

b −

−

4
∑

c=1

4
∑

d=1

4
∑

r=1

dbc LΥi
(Hc

d)Hd
r d

ra

4
+

3
∑

m=0

3
∑

n=0

4
∑

α=1

LΥi
(γ α

bm gmn)

4
×

× γ a
αn +

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γn

is g
ms γ a

αn

4
.

(3.3)

The theorem 1.1 says that the condition ∇H = 0 follows from the conditions
(1.3). Therefore, one can expect that the derivatives LΥi

(Hc
d) are expressed through
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the derivatives of the components of d and γ. It is really so and the calculations
of LΥi

(Hc
d) are quite similar to those in proving the theorem 7.3 in [3]. These

calculations are based on the formula (2.13). For the sake of brevity we omit them
and give the ultimate result only. Here is the formula for LΥi

(Hc
d):

LΥi
(Hc

d) =

4
∑

α=1

4
∑

r=1

Hc
r d

rα LΥi
(dαd)

6
−

4
∑

β=1

4
∑

s=1

dcβ LΥi
(dβs)H

s
d

6
+

+
4
∑

α=1

4
∑

β=1

LΥi
(dcα dβd)H

β
α

6
−

4
∑

α=1

4
∑

β=1

3
∑

m=0

3
∑

n=0

LΥi
(γ c

βn gmn γ α
dm)Hβ

α

6
.

(3.4)

It is clear that substituting (3.4) into (3.3) will make this formula more huge and
complicated. Therefore, we stop our transformations of the formula (1.14) at this
point assuming that (3.3) is the most simple formula for the spinor components of
the torsion-free metric connection (Γ,A, Ā).

4. Special frames and curvature spin-tensors.

There are four types of special frames in the bundle of Dirac spinors DM . They
are considered in [3]. A frame Ψ1, Ψ2, Ψ3, Ψ4 of any one of these four types inDM
is canonically associated with some definite frame Υ0, Υ1, Υ2, Υ3 in the tangent
bundle TM. The frame types association is given by the following diagram:

Canonically orthonormal

chiral frames
→

Positively polarized

right orthonormal frames

P -reverse
anti-chiral frames

→
Positively polarized

left orthonormal frames

T -reverse
anti-chiral frames

→
Negatively polarized

right orthonormal frames

PT -reverse
chiral frames

→
Negatively polarized

left orthonormal frames

(4.1)

For the sake of certainty we choose some canonically orthonormal chiral frame

Ψ1, Ψ2, Ψ3, Ψ4 in DM . According to the diagram (4.1), it is associated with
some positively polarized right orthonormal frame Υ0, Υ1, Υ2, Υ3 in TM . Then
gij = g(Υi,Υj) and for the components of both metric tensors we have

gij = gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (4.2)

The formula (4.2) means that Υ0, Υ1, Υ2, Υ3 is an orthonormal frame in TM .
Moreover, it is a right frame regarding to the orientation in M . It is positively
polarized, i. e. Υ0 is a time-like unit vector directed to the future.
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Canonically orthonormal chiral frames are simultaneously orthonormal, chiral,
and self-adjoint frames in DM . The orthonormality of our frame Ψ1, Ψ2, Ψ3, Ψ4

means that the components of the metric tensor d are given by the following matrix:

dij = d(Ψi,Ψj) =

∥

∥

∥

∥

∥

∥

∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥

∥

∥

∥

∥

∥

∥

. (4.3)

Chiral frames in the bundle of Dirac spinorsDM are those for which the chirality
operator H is given by the matrix

H i
j =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (4.4)

And finally, self-adjoint frames in the bundle of Dirac spinors DM are those for
which the Dirac form D is given by the matrix

Dij̄ = D(Ψj̄ ,Ψi) =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

. (4.5)

Our choice is a canonically orthonormal chiral frame Ψ1, Ψ2, Ψ3, Ψ4 in DM

and its associated positively polarized right orthonormal frame Υ0, Υ1, Υ2, Υ3 in
TM . Therefore, in our case the conditions (4.2), (4.3), (4.4), and (4.5) are fulfilled
simultaneously. The components of Dirac’s γ-field are uniquely fixed by our choice
of frames. They are usually collected into four matrices:

γ0 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

, γ1 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

∥

∥

∥

∥

∥

∥

∥

,

(4.6)

γ2 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

∥

∥

∥

∥

∥

∥

∥

, γ3 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

.

The matrices (4.6) are enumerated by the spacial index k of γ a
bk. Other two indices

a and b represent the position of an element within the matrix γk, the index a being
the row number and the index b being the column number.

Looking at the formulas (4.2), (4.3), (4.4), (4.5), and (4.6), we see that the
components of all basic fields g, d, H, D, and γ are constants. It means that
our choice of frames is that very case where the formula (1.15) is applicable and
where the formula (1.14) reduces to (1.15). This choice of frames is convenient
for calculating the curvature tensors. The first of them is the Riemann curvature
tensor R. Its components are given by the formula:

R
p
qij = LΥi

(Γp
j q)− LΥj

(Γp
i q) +

3
∑

h=0

(

Γp
i h Γh

j q − Γp
j h Γh

i q

)

−

3
∑

k=0

c k
ij Γp

kq (4.7)
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(see (6.27) in [5]). Here Γk
ij are the spacial components of the metric connection

(Γ,A, Ā). They are given by the formula (1.12). Apart from (4.7), there are two
other curvature tensors R and R̄. Their components are given by the formulas

R
p
qij = LΥi

(Ap
j q)− LΥj

(Ap
i q) +

4
∑

h=1

(

Ap
i h Ah

j q −Ap
j h Ah

i q

)

−
3
∑

k=0

c k
ij Ap

kq , (4.8)

R̄
p
qij = LΥi

(Āp
j q)− LΥj

(Āp
i q) +

4
∑

h=1

(

Āp
i h Āh

j q − Āp
j h Āh

i q

)

−
3
∑

k=0

c k
ij Āp

kq (4.9)

(compare with (6.25) and (6.26) in [5]). Applying (1.13) to (4.8) and (4.9) and
taking into account that Γk

ij and c k
ij are purely real functions, we get

R̄
p
qij = R

p
qij . (4.10)

In a coordinate-free form the relationship (4.10) is written as

R̄ = τ(R), (4.11)

while the Riemann curvature tensor R is a purely real field, i. e.

τ(R) = R. (4.12)

Keeping in mind that we deal with the special frames Ψ1, Ψ2, Ψ3, Ψ4 and
Υ0, Υ1, Υ2, Υ3, let’s apply the formula (1.15) to (4.8). As a result we get

R
p
qij =

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

LΥi
(Γr

jm)− LΥj
(Γr

im)

4
γα

qn g
mn γp

αr+

+

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Ap
i h Γr

jm γα
qn g

mn γh
αr

4
−

−

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Ah
i q Γr

jm γα
hn g

mn γp
αr

4
−

−

3
∑

k=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

c k
ij

4
Γr

km γα
qn g

mn γp
αr.

(4.13)

Since γp
αr = const, the concordance condition ∇γ = 0 from (1.3) is written as

∇i γ
p
αr =

4
∑

h=1

Ap
i h γ

h
αr −

4
∑

h=1

Ah
i α γ

p
hr −

3
∑

s=0

Γs
ir γ

p
αs = 0.

From this identity we derive

4
∑

h=1

Ap
i h γ

h
αr =

4
∑

h=1

Ah
i α γ

p
hr +

3
∑

s=0

Γs
ir γ

p
αs. (4.14)
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Applying (4.14) to the second term in the right hand side of (4.13), we write it as

R
p
qij =

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

LΥi
(Γr

jm)− LΥj
(Γr

im)

4
γα

qn g
mn γp

αr+

+

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Ah
i α Γr

jm γα
qn g

mn γ
p
hr

4
+

+

3
∑

s=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γs
ir Γr

jm γα
qn g

mn γp
αs

4
+

−

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Ah
i q Γr

jm γα
hn g

mn γp
αr

4
−

−

3
∑

k=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

c k
ij

4
Γr

km γα
qn g

mn γp
αr.

(4.15)

Now we use the following formula equivalent to (4.14):

4
∑

α=1

Ah
i α γα

qn =

4
∑

α=1

Aα
i q γ

h
αn +

3
∑

s=0

Γs
in γ

h
qs. (4.16)

Applying (4.16) to the second term in the right hand side of (4.15), we write it as

R
p
qij =

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

LΥi
(Γr

jm)− LΥj
(Γr

im)

4
γα

qn g
mn γp

αr+

+

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Aα
i q Γr

jm γh
αn g

mn γ
p
hr

4
+

+

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γs
in Γr

jm γh
qs g

mn γ
p
hr

4
+

+

3
∑

s=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γs
ir Γr

jm γα
qn g

mn γp
αs

4
+

−

4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Ah
i q Γr

jm γα
hn g

mn γp
αr

4
−

−

3
∑

k=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

c k
ij

4
Γr

km γα
qn g

mn γp
αr.

(4.17)

By means of the formal exchanges of summation indices h ↔ α we find that the
second and the fifth terms in the right hand side of (4.17) do cancel each other.
In order to transform the third term in the right hand side of (4.17) we use the
concordance condition ∇g = 0 from (1.10). Since gms = const, this condition yields

∇ig
ms =

3
∑

n=0

Γm
in g

ns +

3
∑

n=0

Γs
in g

mn = 0.
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This formula can be rewritten in the following way:

3
∑

n=0

Γs
in g

mn = −
3
∑

n=0

Γm
in g

ns. (4.18)

Applying the formula (4.18) to the third term in the right hand side of (4.17) and
canceling the second and the fifth terms there, we get

R
p
qij =

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

LΥi
(Γr

jm)− LΥj
(Γr

im)

4
γα

qn g
mn γp

αr−

−
4
∑

h=1

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γm
in Γr

jm γh
qs g

ns γ
p
hr

4
+

+

3
∑

s=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γs
ir Γr

jm γα
qn g

mn γp
αs

4
−

−
3
∑

k=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

c k
ij

4
Γr

km γα
qn g

mn γp
αr.

(4.19)

Upon the formal change of summation indices s→ n→ m→ h→ α in the second
term and s→ r → h in the third term respectively we write (4.19) as

R
p
qij =

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

LΥi
(Γr

jm)− LΥj
(Γr

im)

4
γα

qn g
mn γp

αr−

−

3
∑

h=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γr
jh Γh

im γα
qn g

mn γp
αr

4
+

+

3
∑

h=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Γr
ih Γh

jm γα
qn g

mn γp
αr

4
−

−

3
∑

k=0

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

c k
ij

4
Γr

km γα
qn g

mn γp
αr.

(4.20)

And finally, here is the last transformation that brings the formula (4.20) to

R
p
qij =

1

4

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

(

LΥi
(Γr

jm)− LΥj
(Γr

im) +

+

3
∑

h=0

(

Γr
ih Γh

jm − Γr
jh Γh

im

)

−

3
∑

k=0

c k
ij

4
Γr

km

)

γα
qn gmn γp

αr.

(4.21)

Comparing (4.21) with the formula (4.7), we can write the following ultimate result:

R
p
qij =

1

4

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Rr
mij γ

α
qn gmn γp

αr. (4.22)

Note that the formula (4.22) is quite similar to (1.15). However, like (4.11) and
(4.12) and unlike (1.15), it is a tensorial formula. For this reason, being proved for
some special pair of frames, it remains valid for an arbitrary pair of frames.
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Theorem 4.1. The spinor curvature tensor R of the torsion-free metric connec-

tion (Γ,A, Ā) in the bundle of Dirac spinors DM is related to the corresponding

Riemann curvature tensor R by means of the formula (4.22). This formula is valid

for any two frames Ψ1, Ψ2, Ψ3, Ψ4 and Υ0, Υ1, Υ2, Υ3 no matter holonomic or

non-holonomic, special or not special, and, if special, no matter being in frame

association (4.1) or not.

5. Conclusions.

The main result of this paper is that the formulas (1.14) and (1.15) represent the
spinor components of the same metric connection in the bundle of Dirac spinors.
The formula (1.14) is a general formula, while (1.15) is its specialization. The
formula (1.15) is an important specialization since, for instance, it is convenient for
proving the formula (4.22).
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