
ar
X

iv
:0

70
8.

11
71

v1
  [

m
at

h.
D

G
] 

 8
 A

ug
 2

00
7

ON THE SPINOR STRUCTURE OF THE HOMOGENEOUS

AND ISOTROPIC UNIVERSE IN CLOSED MODEL.

R. A. Sharipov

Abstract. The closed homogeneous and isotropic universe is considered. The bun-
dles of Weyl and Dirac spinors for this universe are explicitly described. Some explicit
formulas for the basic fields and for the connection components in stereographic and
in spherical coordinates are presented.

1. Stereographic projections of the sphere S3.

It is known that the closed homogeneous and isotropic universe is described by
a manifold diffeomorphic to the Cartesian product of the three-dimensional sphere
S3 by a straight line: M = R × S3 (see § 111 and § 112 in [1]). The sphere S3

is a manifold that can be cov-
ered with two local charts. We
choose stereographic projections
from two diametrically opposite
points (we call them North and
South poles) to their equatorial
hyperplane. The sphere S3 is
naturally presented as a three-
dimensional hypersurface in the
four-dimensional space R4 with
the standard Euclidean metric.
Let z be a point on such a sphere
with the radius R. Then z/R is
a point on the unit sphere. Let x
and y be the stereographic pro-
jections of z/R. Then the points
x and y lie on some ray in the

equatorial hyperplane coming out from the center of the sphere. It is rather easy
to derive the following formulas relating their coordinates:
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. (1.1)
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Here |x|2 = (x1)2 + (x2)2 + (x3)2 and |y|2 = (y1)2 + (y2)2 + (y3)2. As for the point
z on the sphere, its coordinates can also be expressed through the coordinates of x
and y. Here are the formulas for the coordinates of the point z:
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. (1.3)

The standard Euclidean metric in R4 is given by the formula

ds2 = (dz1)2 + (dz2)2 + (dz3)2 + (dz4)2. (1.4)

Differentiating (1.2) and (1.3) and substituting them into (1.4), we derive the for-
mulas for the induced metric in the local coordinates x1, x2, x3 and y1, y2, y3:

ds2 =
4 R2 (dx1)2 + 4 R2 (dx2)2 + 4 R2 (dx3)2

(|x|2 + 1)
2

, (1.5)

ds2 =
4 R2 (dy1)2 + 4 R2 (dy2)2 + 4 R2 (dy3)2

(|y|2 + 1)2
. (1.6)

Passing from R4 to the space-time manifold M = R × S3, we add new coordi-
nates x0 and y0 to the initial coordinates x1, x2, x3 and y1, y2, y3. The transition
functions relating x1, x2, x3 and y1, y2, y3 are determined by the formulas (1.1).
For the newly introduced coordinates we set

x0 = y0. (1.7)

Using the local coordinates x0, x1, x2, x3 and y0, y1, y2, y3 and relying upon (1.5)
and (1.6), we introduce the Minkowski type metric g to our model M of the universe:

ds2 = R2 (dx0)2 − 4 R2 (dx1)2 + 4 R2 (dx2)2 + 4 R2 (dx3)2

(|x|2 + 1)
2

, (1.8)

ds2 = R2 (dy0)2 − 4 R2 (dy1)2 + 4 R2 (dy2)2 + 4 R2 (dy3)2

(|y|2 + 1)
2

. (1.9)

From now on the parameter R in formulas is not a constant. We shall assume it to
be a function of the newly introduced coordinates (1.7):

R = R(x0) = R(y0). (1.10)

The parameter R in (1.10) is interpreted as the radius of the sphere S3 in its
Euclidean realization as a hypersurface in R4. This parameter is the only parameter
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describing the evolution of the homogeneous and isotropic universe in closed model.
One can introduce the time variable t through the following formula:

R dx0 = R dy0 = c dt (c is the light velocity).

Then we can write (1.10) as R = R(t). Depending on the function R(t) we say:
the universe is stable, the universe is expanding, or the universe is contracting.
Oscillatory regimes are also admissible. Unlike the Newtonian mechanics, t is not
an absolute time in the universe, but the most preferable time variable due to the
symmetry of the model.

The signature of the metric g is (+,−,−,−). Looking at (1.8) and (1.9), we see
that the metric tensor g is diagonal in the stereographic projection charts. This
means that the coordinate frames of these two charts

∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3
, (1.11)

∂

∂y0
,

∂

∂y1
,

∂

∂y2
,

∂

∂y3
(1.12)

are orthogonal frames. However, they are not orthonormal frames. We normalize
them introducing the following two orthonormal frames:

X0 =
1

R

∂

∂x0
, X1 =

1 + |x|2
2 R

∂

∂x1
,

(1.13)

X2 =
1 + |x|2

2 R

∂

∂x2
, X3 =

1 + |x|2
2 R

∂

∂x3
,

Y0 =
1

R

∂

∂y0
, Y1 =

1 + |y|2
2 R

∂

∂y1
,

(1.14)

Y2 =
1 + |y|2

2 R

∂

∂y2
, Y3 =

1 + |y|2
2 R

∂

∂y3
.

The frames (1.13) and (1.14) are orthonormal, i. e. the metric tensor g and its dual
metric tensor are given by the standard Minkowski matrix

gij = gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

(1.15)

in both of these two frames. But unlike the frames (1.11) and (1.12), these two
frames are non-holonomic. The vector fields X0, X1, X2, X3 and Y0, Y1, Y2, Y3

composing these frames do not commute with each other:

[Xi,Xj ] =

3
∑

k=0

c k
ij Xk. (1.16)
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Using (1.13), one can easily find the explicit formulas for the commutation coeffi-
cients c k

ij in (1.16). Most of these coefficients are zero. Below is the list of those

coefficients c k
ij which are nonzero:

c 1
01 = −c 1

10 = c 2
02 = −c 2

20 = c 3
03 = −c 3

30 = −R′

R2
,

c 1
12 = −c 1

21 = − (x2)

R2
, c 2

12 = −c 2
21 =

(x1)

R2
,

(1.17)

c 1
13 = −c 1

31 = − (x3)

R2
, c 3

13 = −c 3
31 =

(x1)

R2
,

c 2
23 = −c 2

32 = − (x3)

R2
, c 3

23 = −c 3
32 =

(x2)

R2
.

Here R′ is the derivative of the function (1.10). The vector fields of the second
frame Y0, Y1, Y2, Y3 obey the commutation relationships similar to (1.16):

[Yi,Yj ] =

3
∑

k=0

c k
ij Yk. (1.18)

Below is the list of all nonzero commutation coefficients c k
ij for (1.18):

c 1
01 = −c 1

10 = c 2
02 = −c 2

20 = c 3
03 = −c 3

30 = − R′

R2
,

c 1
12 = −c 1

21 = − (y2)

R2
, c 2

12 = −c 2
21 =

(y1)

R2
,

(1.19)

c 1
13 = −c 1

31 = − (y3)

R2
, c 3

13 = −c 3
31 =

(y1)

R2
,

c 2
23 = −c 2

32 = − (y3)

R2
, c 3

23 = −c 3
32 =

(y2)

R2
.

The formula (1.1) complemented with the formula (1.7) determines the tran-
sition functions for two overlapping local charts x0, x1, x2, x3 and y0, y1, y2, y3.
Differentiating these transition functions, we get the transition matrices relating
the holonomic frames (1.11) and (1.12):

∂

∂xi
=

3
∑

j=0

∂yj

∂xi

∂

∂yj
,

∂

∂yi
=

3
∑

j=0

∂xj

∂yi

∂

∂xj
. (1.20)

Then, applying (1.13) and (1.14) to (1.20), we derive the formulas relating the
non-holonomic frames X0, X1, X2, X3 and Y0, Y1, Y2, Y3:

Xi =

3
∑

j=0

T j
i Yj , Yi =

3
∑

j=0

Sj
i Xj . (1.21)
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Here is the explicit formula for the matrix S in (1.21):

S =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0

0
|y|2 − 2 (y1)2

|y|2
−2 (y1) (y2)

|y|2
−2 (y1) (y3)

|y|2

0
−2 (y1) (y2)

|y|2
|y|2 − 2 (y2)2

|y|2
−2 (y2) (y3)

|y|2

0
−2 (y1) (y3)

|y|2
−2 (y2) (y3)

|y|2
|y|2 − 2 (y3)2

|y|2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.22)

The matrix T is the inverse matrix for S, i. e. T = S−1. Its components can be
expressed in terms of the coordinates x0, x1, x2, x3:

T =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0

0
|x|2 − 2 (x1)2

|x|2
−2 (x1) (x2)

|x|2
−2 (x1) (x3)

|x|2

0
−2 (x1) (x2)

|x|2
|x|2 − 2 (x2)2

|x|2
−2 (x2) (x3)

|x|2

0
−2 (x1) (x3)

|x|2
−2 (x2) (x3)

|x|2
|x|2 − 2 (x3)2

|x|2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.23)

In general case the matrices S and T are different. However, it is the feature of our
particular charts that the matrices (1.22) and (1.23) do coincide:

S = T, S2 = T 2 = 1. (1.24)

The frames (1.13) and (1.14) are two orthonormal frames of the spherical universe
M = R × S3. The vector X0 = Y0 is a time-like vector directed to the future.
Therefore the frames (1.13) and (1.14) are called positively polarized (see definition
in § 5 of [2]). However, their orientations are different. Indeed, by means of direct
calculations for S and T we find that

detS = det T = −1. (1.25)

The formula (1.25) is concordant with (1.24). It means that if we take (1.13) for
a right oriented frame in M , then (1.14) is a left oriented frame. In the theory of
Weyl spinors only positively polarized right orthonormal frames are admissible (see
definition 5.2 in [2]). For this reason we introduce the following auxiliary frame:

Ỹ0 = Y0, Ỹ1 = −Y1, Ỹ2 = −Y2, Ỹ3 = −Y3. (1.26)
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Like X0, X1, X2, X3, the frame (1.26) is a positively polarized right orthonormal
frame in M . It is related to X0, X1, X2, X3 as follows:

Xi =

3
∑

j=0

T̃ j
i Ỹj , Ỹi =

3
∑

j=0

S̃j
i Xj . (1.27)

Here are the explicit formulas for the matrices S̃ and T̃ in (1.27):

S̃ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0

0
2 (y1)2 − |y|2

|y|2
2 (y1) (y2)

|y|2
2 (y1) (y3)

|y|2

0
2 (y1) (y2)

|y|2
2 (y2)2 − |y|2

|y|2
2 (y2) (y3)

|y|2

0
2 (y1) (y3)

|y|2
2 (y2) (y3)

|y|2
2 (y3)2 − |y|2

|y|2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (1.28)

T̃ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0

0
|x|2 − 2 (x1)2

|x|2
−2 (x1) (x2)

|x|2
−2 (x1) (x3)

|x|2

0
−2 (x1) (x2)

|x|2
|x|2 − 2 (x2)2

|x|2
−2 (x2) (x3)

|x|2

0
−2 (x1) (x3)

|x|2
−2 (x2) (x3)

|x|2
|x|2 − 2 (x3)2

|x|2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.29)

Like in (1.24), for the matrices (1.28) and (1.29) we have the relationships

S̃ = T̃ , S̃2 = T̃ 2 = 1. (1.30)

However, instead of (1.25), their determinants now are equal to the unity:

det S̃ = det T̃ = 1. (1.31)

Being transition matrices that relate two positively polarized right orthonormal
frames, the matrices S̃ and det T̃ belong to the special orthochronous Lorentz group
SO+(1, 3, R). Our next step is to construct the bundle SM of Weyl spinors for the

universe M = R × S3. We use the frames X0, X1, X2, X3 and Ỹ0, Ỹ1, Ỹ2, Ỹ3

and their transition matrices S̃ and T̃ for this purpose.

2. Constructing the bundle of Weyl spinors.

The bundle of Weyl spinors SM is a two-dimensional complex vector-bundle
related in some special way to the tangent bundle TM (see definition 5.2 in [2]).



ON THE SPINOR STRUCTURE . . . 7

According to this definition, each positively polarized right orthonormal frame of
the tangent bundle TM should be associated with some frame of the spinor bundle
in such a way that the transition matrices of the associated spinor frames would
belong to the group SL(2, C) and would be linked to the transition matrices of the
tangent frames by means of the group homomorphism

φ : SL(2, C) → SO+(1, 3, R). (2.1)

In our particular case we have two positively polarized right orthonormal frames
(1.13) and (1.26) with the transition matrix (1.28) relating them. In order to
prove the existence of the spinor bundle SM in the case of the spherical universe
M = R × S3 we need to find a matrix S̃ ∈ SL(2, C) such that φ(S̃) = S̃. The

components of the matrix S̃ should be smooth functions in the intersection of the
domains of two frames (1.13) and (1.26), i. e. they should be smooth functions on
the whole sphere S3 except for the poles. As for the homomorphism (2.1), this
homomorphism is given by the explicit formulas (1.2), (1.3), (1.4), and (1.5) in

paper [3]. Here are these explicit formulas expressing S̃ = φ(S̃) through S̃:

S̃0
0 =

S̃1
1 S̃

1
1 + S̃1

2 S̃
1
2 + S̃2

1 S̃
2
1 + S̃2

2 S̃
2
2

2
,

S̃0
1 =

S̃1
1 S̃

1
2 + S̃1

2 S̃
1
1 + S̃2

1 S̃
2
2 + S̃2

2 S̃
2
1

2
,

S̃0
2 =

S̃1
2 S̃1

1 − S̃1
1 S̃1

2 + S̃2
2 S̃2

1 − S̃2
1 S̃2

2

2 i
,

S̃0
3 =

S̃1
1 S̃1

1 − S̃1
2 S̃1

2 + S̃2
1 S̃2

1 − S̃2
2 S̃2

2

2
,

(2.2)

S̃1
0 =

S̃2
1 S̃1

1 + S̃1
1 S̃2

1 + S̃2
2 S̃1

2 + S̃1
2 S̃2

2

2
,

S̃1
1 =

S̃2
1 S̃1

2 + S̃1
2 S̃2

1 + S̃2
2 S̃1

1 + S̃1
1 S̃2

2

2
,

S̃1
2 =

S̃1
2 S̃2

1 − S̃2
1 S̃1

2 + S̃2
2 S̃1

1 − S̃1
1 S̃2

2

2 i
,

S̃1
3 =

S̃2
1 S̃1

1 + S̃1
1 S̃2

1 − S̃2
2 S̃1

2 − S̃1
2 S̃2

2

2
,

(2.3)

S̃2
0 =

S̃1
1 S̃2

1 − S̃2
1 S̃1

1 + S̃1
2 S̃2

2 − S̃2
2 S̃1

2

2 i
,

S̃2
1 =

S̃1
2 S̃2

1 − S̃2
1 S̃1

2 + S̃1
1 S̃2

2 − S̃2
2 S̃1

1

2 i
,

S̃2
2 =

S̃2
2 S̃1

1 + S̃1
1 S̃2

2 − S̃2
1 S̃1

2 − S̃1
2 S̃2

1

2
,

S̃2
3 =

S̃1
1 S̃2

1 − S̃2
1 S̃1

1 + S̃2
2 S̃1

2 − S̃1
2 S̃2

2

2 i
,

(2.4)



8 R. A. SHARIPOV

S̃3
0 =

S̃1
1 S̃1

1 + S̃1
2 S̃1

2 − S̃2
1 S̃2

1 − S̃2
2 S̃2

2

2
,

S̃3
1 =

S̃1
1 S̃

1
2 + S̃1

2 S̃
1
1 − S̃2

1 S̃
2
2 − S̃2

2 S̃
2
1

2
,

S̃3
2 =

S̃1
2 S̃

1
1 − S̃1

1 S̃
1
2 + S̃2

1 S̃
2
2 − S̃2

2 S̃
2
1

2 i
,

S̃3
3 =

S̃1
1 S̃1

1 + S̃2
2 S̃2

2 − S̃2
1 S̃2

1 − S̃1
2 S̃1

2

2
.

(2.5)

The components of the matrix S̃ are known. Therefore, the formulas (2.2), (2.3),
(2.4), and (2.5), are understood as the equations for the components of a complex

2 × 2 matrix S̃. As appears, these equations can be solved explicitly:

S̃ =
1

|y|

∥

∥

∥

∥

∥

∥

i y3 i y1 + y2

i y1 − y2 −i y3

∥

∥

∥

∥

∥

∥

. (2.6)

It is easy to see that det S̃ = 1, which means that S̃ ∈ SL(2, C). The matrix (2.6)
satisfying the equations (2.2), (2.3), (2.4), (2.5) and belonging to SL(2, C) is unique

up to the change of sign: S̃ → −S̃.
Let’s denote by T̃ the inverse matrix for the matrix (2.6), i. e. let T̃ = S̃−1. By

means of the direct calculations, applying (1.1), we find

T̃ =
−1

|x|

∥

∥

∥

∥

∥

∥

i x3 i x1 + x2

i x1 − x2 −i x3

∥

∥

∥

∥

∥

∥

. (2.7)

When expressed back through y0, y1, y2, y3, the matrix (2.7) coincides with −S̃.
This means that we have the relationships

S̃ = −T̃, S̃
2 = T̃

2 = −1. (2.8)

The determinants of the matrices (2.6) and (2.7) are equal to the unity:

det S̃ = det T̃ = 1. (2.9)

The relationships (2.8) and (2.9) are concordant with the relationships (1.30) and
(1.31) since φ(−S) = φ(S) for the homomorphism (2.1).

The mutually inverse matrices (2.6) and (2.7) are postulated to be the transition

matrices for the spinor frames Ψ1, Ψ2 and Φ̃1, Φ̃2:

Ψi =

2
∑

j=1

T̃
j
i Φ̃j , Φ̃i =

2
∑

j=1

S̃
j
i Ψj . (2.10)

Thus, having found the matrices (2.6) and (2.7) and having equipped the local

charts x0, x1, x2, x3 and y0, y1, y2, y3 with the spinor frames Ψ1, Ψ2 and Φ̃1, Φ̃2
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related to each other by means of the formulas (2.10), we have constructed the
spinor bundle SM over the space-time manifold M = R × S3.

3. Basic fields of the bundle of Weyl spinors.

The spinor bundle of Weyl spinors SM over any four-dimensional space-time
manifold M is equipped with two special spin-tensorial fields. These basic spin-
tensorial fields are presented in the following table:

Symbol Name Spin-tensorial
type

d Skew-symmetric metric tensor (0, 2|0, 0|0, 0)

G Infeld-van der Waerden field (1, 0|1, 0|0, 1)

(3.1)

The spin-tensorial type in the table (3.1) specifies the number of indices in coordi-
nate representation of fields. The first two numbers are the numbers of upper and
lower spinor indices, the second two numbers are the numbers of upper and lower
conjugate spinor indices, and the last two numbers are the numbers of upper and
lower tensorial indices (they are also called spacial indices).

Now let’s return to our special case M = R×S3. The spinor frames Ψ1, Ψ2 and
Φ̃1, Φ̃2 considered in section 2 are canonically associated with positively polarized
right orthonormal frames in TM . For this reason they are orthonormal frames by
definition, i. e. the skew symmetric metric tensor d is given by the matrix

dij =

∥

∥

∥

∥

0 1

−1 0

∥

∥

∥

∥

(3.2)

in both of these frames. The indices i and j in (3.2) are spinor indices. Therefore,
the canonical presentation (3.2) of the metric tensor d depends on the choice of a
spinor frame, but it is not sensitive to the choice of a tangent frame.

Unlike d, the Infeld-van der Waerden field G has one lower spacial index in
its coordinate presentation. Therefore, its coordinate presentation depends on the
choice of two frames in TM and in SM . According to the definition of the spinor
bundle SM (see definition 5.2 in [2]), each positively polarized right orthonormal
frame of TM has its associated orthonormal frame in SM . We visualize this frame
association through the following diagram:

Orthonormal frames → Positively polarized

right orthonormal frames
(3.3)

In each canonically associated pair of frames the components of the Infeld-van der
Waerden field Giī

q are presented by the Pauli matrices:

Giī
0 =

∥

∥

∥

∥

1 0
0 1

∥

∥

∥

∥

, Giī
2 =

∥

∥

∥

∥

0 −i
i 0

∥

∥

∥

∥

,

(3.4)

Giī
1 =

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, Giī
3 =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

.
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The lower spacial index q = 0, 1, 2, 3 enumerates the matrices in (3.4). The spinor
index i and the conjugate spinor index ī determine the position of the component
Giī

q within one of these matrices. In section 2 above we have constructed the
following two pairs of associated frames of SM and TM :

Ψ1, Ψ2 → X0, X1, X2, X3, (3.5)

Φ̃1, Φ̃2 → Ỹ0, Ỹ1, Ỹ2, Ỹ3. (3.6)

Once the spinor bundle SM is constructed, the choice of associated frame pairs is
not obligatory, e. g. we can choose the frames

Φ̃1, Φ̃2 − Y0, Y1, Y2, Y3. (3.7)

These frames are not canonically associated. However, using (1.26) and (3.4), we

easily calculate the Infeld-van der Waerden symbols Giī
q in this frame pair:

Giī
0 =

∥

∥

∥

∥

1 0
0 1

∥

∥

∥

∥

, Giī
2 = −

∥

∥

∥

∥

0 −i
i 0

∥

∥

∥

∥

,

Giī
1 = −

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, Giī
3 = −

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

.

Similarly, one can combine any frame of SM with any frame of TM into a frame
pair and then calculate the components of G in such a non-canonical frame pair.

4. The bundle of Dirac spinors and its basic fields.

The bundle of Dirac spinors DM is constructed as the direct sum of the bundle
of Weyl spinors SM and its Hermitian conjugate bundle S†M :

DM = SM ⊕ S†M. (4.1)

It does exist provided SM does. The bundles SM and S†M are called chiral and
antichiral components of the expansion (4.1). The Dirac bundle DM has more
basic spin-tensorial fields as compared to SM :

Symbol Name Spin-tensorial
type

d Skew-symmetric metric tensor (0, 2|0, 0|0, 0)

H Chirality operator (1, 1|0, 0|0, 0)

D Dirac form (0, 1|0, 1|0, 0)

γ Dirac γ-field (1, 1|0, 0|0, 1)

(4.2)

Let Ψ1, Ψ2 be an orthonormal frame of the bundle SM and let ϑ 1, ϑ 2 be its
conjugate frame in S†M . At each point p off the space-time manifold ϑ 1 and ϑ 2

are semilinear functionals in the fiber Sp(M) such that

ϑ i(Ψ1) = δi
j ,
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where δi
j is the Kronecker delta-symbol. Denoting Ψ3 = ϑ 1 and Ψ4 = ϑ 2, we get

a frame Ψ1, Ψ2, Ψ3, Ψ4 of the Dirac bundle (4.1) (see more details in [3]). Such
a frame of DM is called a canonically orthonormal chiral frame. There are four
types of special frames in DM . Each special frame is canonically associated with
some frame in tangent bundle TM according to the following diagram:

Canonically orthonormal

chiral frames
→ Positively polarized

right orthonormal frames

P -reverse
antichiral frames

→ Positively polarized

left orthonormal frames

T -reverse
antichiral frames

→ Negatively polarized

right orthonormal frames

PT -reverse
chiral frames

→ Negatively polarized

left orthonormal frames

(4.3)

Definition 4.1. A frame Ψ1, Ψ2, Ψ3, Ψ4 of the Dirac bundle is called an or-
thonormal frame if the metric tensor d is given by the matrix

dij =

∥

∥

∥

∥

∥

∥

∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥

∥

∥

∥

∥

∥

∥

(4.4)

in this frame. This frame is called an anti-orthonormal frame if the metric tensor
d is given by the opposite matrix in this frame:

dij = −

∥

∥

∥

∥

∥

∥

∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥

∥

∥

∥

∥

∥

∥

. (4.5)

Definition 4.2. A frame Ψ1, Ψ2, Ψ3, Ψ4 of the Dirac bundle is called a chiral
frame if the chirality operator H is given by the matrix

Hi
j =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

(4.6)

in this frame. This frame is called an antichiral frame if the chirality operator H is
given by the opposite matrix in this frame:

Hi
j = −

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (4.7)
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Definition 4.3. A frame Ψ1, Ψ2, Ψ3, Ψ4 of the Dirac bundle is called a self-
adjoint frame if the Dirac form D is given by the matrix

Dij̄ =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

(4.8)

in this frame. This frame is called an anti-self-adjoint frame if the Dirac form D is
given by the opposite matrix in this frame:

Dij̄ = −

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

. (4.9)

Definition 4.4. A canonically orthonormal chiral frame of the Dirac bundle is a
frame which is orthonormal, chiral, and self-adjoint simultaneously.

Definition 4.5. A P -reverse antichiral frame of the Dirac bundle is a frame which
is anti-orthonormal, antichiral, and self-adjoint simultaneously.

Definition 4.6. A T -reverse antichiral frame of the Dirac bundle is a frame which
is orthonormal, antichiral, and anti-self-adjoint simultaneously.

Definition 4.7. A PT -reverse chiral frame of the Dirac bundle is a frame which
is anti-orthonormal, chiral, and anti-self-adjoint simultaneously.

The definitions 4.4, 4.5, 4.6, 4.7 and the formulas (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9) describe the coordinate presentation of the basic field d, H, and D in special
frames whose types are listed in the diagram (4.3).

According to the table (4.2), the Dirac γ-field has one lower spacial index.
Therefore its coordinate presentation depends not only on the choice of a spinor
frame Ψ1, Ψ2, Ψ3, Ψ4 in the bundle DM , but on the choice of a tangent frame
X0, X1, X2, X3 in TM too. Assume that

Ψ1, Ψ2, Ψ3, Ψ4 → X0, X1, X2, X3

is a pair of canonically associated frames belonging to any one of the four types
specified in the diagram (4.3). Then the components γa

bq of the Dirac γ-field γ are
presented by the following four Dirac matrices in this frame pair:

γa
b0 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

, γa
b1 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

∥

∥

∥

∥

∥

∥

∥

,

(4.10)

γa
b2 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

∥

∥

∥

∥

∥

∥

∥

, γa
b3 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

.
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The spacial index q = 0, 1, 2, 3 enumerates the matrices in (4.10). The spinor
indices a and b determine the position of the component γa

bq within one of these

four matrices (a is the row number and b is the column number).
Now let’s return to the frame pairs (3.5) and (3.6). The frames Ψ1, Ψ2 and

Φ̃1, Φ̃2 of the bundle SM can be extended up to frames of the Dirac bundle DM .
As a result we get two pairs of associated frames

Ψ1, Ψ2, Ψ3, Ψ4 → X0, X1, X2, X3, (4.11)

Φ̃1, Φ̃2, Φ̃3, Φ̃4 → Ỹ0, Ỹ1, Ỹ2, Ỹ3. (4.12)

Both frame pairs (4.11) and (4.12) belong to the first type in the diagram (4.3).
The frames (3.7) are not canonically associated. Therefore they have no exten-

sion to a canonically associated pair. However, note that Y0, Y1, Y2, Y3 is a posi-
tively polarized left orthonormal frame of TM related to the frame Ỹ0, Ỹ1, Ỹ2, Ỹ3

according to the formula (1.26), i. e. through the inversion of the space-like vectors

Ỹ1, Ỹ2, Ỹ3. Therefore it has an associated frame Φ1, Φ2, Φ3, Φ4:

Φ1, Φ2, Φ3, Φ4 → Y0, Y1, Y2, Y3. (4.13)

The frame Φ1, Φ2, Φ3, Φ4 in (4.13) is produced from the frame Φ̃1, Φ̃2, Φ̃3, Φ̃4

by means of the so called P -reversion procedure (see [3]):

Φ1 = Φ̃3, Φ2 = Φ̃4, Φ3 = Φ̃1, Φ4 = Φ̃2. (4.14)

The frame Φ1, Φ2, Φ3, Φ4 produced from Φ̃1, Φ̃2, Φ̃3, Φ̃4 by means of the formu-
las (4.14) is a P -reverse antichiral frame, i. e. the pair (4.13) belongs to the second
type of associated frame pairs in the diagram (4.3).

The frames Ψ1, Ψ2, Ψ3, Ψ4 and Φ̃1, Φ̃2, Φ̃3, Φ̃4 in (4.11) and (4.12) are related
to each other by means of the formulas

Ψi =

4
∑

j=1

T̃
j
i Φ̃j , Φ̃i =

4
∑

j=1

S̃
j
i Ψj . (4.15)

The formula (4.15) is analogous to the formula (2.10). The 4× 4 matrices S̃ and T̃

in (4.15) are produced from the matrices S̃ and T̃ in (2.10) in some special way (see
formula (2.19) in [3]). In our particular case they are are block-diagonal extensions
of the matrices (2.6) and (2.7):

S̃ =
1

|y|

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

i y3 i y1 + y2 0 0

i y1 − y2 −i y3 0 0

0 0 i y3 i y1 + y2

0 0 i y1 − y2 −i y3

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (4.16)
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T̃ =
1

|x|

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

i x3 i x1 + x2 0 0

i x1 − x2 −i x3 0 0

0 0 i x3 i x1 + x2

0 0 i x1 − x2 −i x3

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (4.17)

The frames Ψ1, Ψ2, Ψ3, Ψ4 and Φ1, Φ2, Φ3, Φ4 in (4.11) and (4.13) are also
related to each other by means of the formulas similar to (4.15):

Ψi =

4
∑

j=1

T
j
i Φj , Φi =

4
∑

j=1

S
j
i Ψj . (4.18)

The matrices S and T in (4.18) are given by the formulas

S =
1

|y|

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 0 i y3 i y1 + y2

0 0 i y1 − y2 −i y3

i y3 i y1 + y2 0 0

i y1 − y2 −i y3 0 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (4.19)

T = − 1

|x|

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 0 i x3 i x1 + x2

0 0 i x1 − x2 −i x3

i x3 i x1 + x2 0 0

i x1 − x2 −i x3 0 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (4.20)

The matrices (4.19) and (4.20) are similar to (4.17) and (4.18). However, unlike
(4.17) and (4.18), they are not block-diagonal. Hence, they mix chiral and antichiral
subbundles in the expansion (4.1).

5. Spherical coordinates.

The stereographic projections (1.2) and (1.3) and the local charts x0, x1, x2, x3

and y0, y1, y2, y3 introduced through them are not very popular in physical litera-
ture, e. g. in [1] the spherical coordinates are used. Therefore we consider the third
chart of spherical coordinates in M = R × S3. The initial coordinate η0 of these
spherical coordinates coincides with x0 and y0:

x0 = y0 = η0 = η. (5.1)
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Other three coordinates η1, η2, η3 are angular variables:

η1 = χ, η2 = θ, η3 = ϕ. (5.2)

They are introduced through the following formulas:

z1 = R sinχ sin θ sinϕ,

z2 = R sinχ sin θ cosϕ,

z3 = R sinχ cos θ,

z4 = R cosχ.

(5.3)

The formulas relating η0, η1, η2, η3 with x0, x1, x2, x3 and y0, y1, y2, y3 are de-
rived from (5.1) and (5.3) by inverting (1.2) and (1.3):











































x0 = η

x1 =
sin χ sin θ sin ϕ

1 − cosχ
,

x2 =
sin χ sin θ cosϕ

1 − cosχ
,

x3 =
sin χ cos θ

1 − cosχ
,











































y0 = η

y1 =
sin χ sin θ sinϕ

1 + cosχ
,

y2 =
sin χ sin θ cosϕ

1 + cosχ
,

y3 =
sin χ cos θ

1 + cosχ
.

(5.4)

Differentiating the formulas (5.4) and substituting them into (1.8) and (1.9), we
derive the formula for the metric in the local coordinates η0, η1, η2, η3:

ds2 = R2 (dη0)2 − R2 (dη1)2 − R2 sin2χ (dη2)2 − R2 sin2χ sin2θ (dη3)2. (5.5)

The formula (5.5) means that the holonomic coordinate frame

∂

∂η0
,

∂

∂η1
,

∂

∂η2
,

∂

∂η3
(5.6)

is orthogonal, but it is not an orthonormal frame. For this reason, instead of (5.6),
we use the following non-holonomic orthonormal frame:

E0 =
1

R

∂

∂η0
, E1 =

1

R

∂

∂η1
,

(5.7)

E2 =
1

R sin χ

∂

∂η2
, E3 =

1

R sin χ sin θ

∂

∂η3
.

Like in (1.16) and (1.18), we have nontrivial commutation relationships for the
frame vectors fields E0, E1, E2, E3 defined by the formulas (5.7):

[Ei,Ej ] =

3
∑

k=0

c k
ij Ek. (5.8)
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Most of the coefficients c k
ij in (5.8) are zero. Here is the list of nonzero ones:

c 1
01 = −c 1

10 = c 2
02 = −c 2

20 = c 3
03 = −c 3

30 = − R′

R2
,

c 2
12 = −c 2

21 = c 3
13 = −c 3

31 = − cosχ

R sinχ
,

c 3
23 = −c 3

32 = − cos θ

R sin χ sin θ
.

(5.9)

Now let’s study how the frame (5.7) is related to the frames (1.13) and (1.26):

Ei =
3

∑

j=0

Ŝj
i Xj , Ei =

3
∑

j=0

ˇ̃Sj
i Ỹj . (5.10)

By means of direct calculations, using (5.7), (1.13), (1.14), and (1.26), we derive

the following formulas for the matrices Ŝ and ˇ̃S in (5.10):

Ŝ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0

0 − sin ϕ sin θ sin ϕ cos θ cosϕ

0 − cosϕ sin θ cosϕ cos θ − sinϕ

0 − cos θ − sin θ 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (5.11)

ˇ̃S =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0

0 − sin ϕ sin θ − sinϕ cos θ − cosϕ

0 − cosϕ sin θ − cosϕ cos θ sin ϕ

0 − cos θ sin θ 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.12)

As appears, both matrices (5.11) and (5.12) belong to the special orthochronous

Lorentz group SO+(1, 3, R). For this reason they are related with two matrices Ŝ

and ˇ̃
S belonging to the group SL(2, C) through the group homomorphism (2.1):

Ŝ = φ(Ŝ), ˇ̃S = φ( ˇ̃
S). (5.13)

These two matrices Ŝ and ˇ̃
S satisfying (5.13) can be found in explicit form:

Ŝ =
1√
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

exp
( i ϕ + i θ

2

)

− exp
( i ϕ − i θ

2

)

exp
( i θ − i ϕ

2

)

exp
(−i θ − i ϕ

2

)

∥

∥

∥

∥

∥

∥

∥

∥

∥

(5.14)

ˇ̃
S =

i√
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

− exp
( i ϕ − i θ

2

)

exp
( i ϕ + i θ

2

)

exp
(−i θ − i ϕ

2

)

exp
( i θ − i ϕ

2

)

∥

∥

∥

∥

∥

∥

∥

∥

∥

(5.15)
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If we express the matrix (2.6) through the spherical coordinates (5.2), then we get

S̃ =

∥

∥

∥

∥

∥

∥

i cos θ sin θ exp(iϕ)

− sin θ exp(−iϕ) −i cos θ

∥

∥

∥

∥

∥

∥

. (5.16)

The matrices (5.14), (5.15), and (5.16) are related to each other as follows:

Ŝ = S̃
ˇ̃
S. (5.17)

Applying the group homomorphism (2.1) to (5.17), we get:

Ŝ = S̃ ˇ̃S. (5.18)

The relationship (5.18) can be verified directly using the formulas (5.11), (5.12),

and the the formula for Ŝ in section 1. Now we define a spinor frame Ξ1, Ξ2 of the
bundle SM associated with the tangent frame E0, E1, E2, E3. We do it by setting

Ξi =

2
∑

j=1

Ŝ
j
i Ψj , Ξi =

2
∑

j=1

ˇ̃
S

j

i Φ̃j . (5.19)

Due to (5.17), (5.10), and (2.10) the formulas (5.19) are consistent with each other.
The frame Ξ1, Ξ2 determined by any one of these two formulas is an orthonormal
frame of the bundle of Weyl spinors. So we have the frame association

Ξ1, Ξ2 → E0, E1, E2, E3 (5.20)

analogous to (3.5) and (3.6). This frame association (5.20) is a special case of the
general scheme presented by the diagram (3.3).

The orthonormal frame Ξ1, Ξ2 of the bundle of Weyl spinors SM has a unique
extension Ξ1, Ξ2, Ξ3, Ξ4 to the Dirac bundle DM . This extension is a canonically
orthonormal chiral frame associated with the frame E0, E1, E2, E3:

Ξ1, Ξ2, Ξ3, Ξ4 → E0, E1, E2, E3. (5.21)

The frame association (5.21) is analogous to (4.11) and (4.12). Note that the frame
E0, E1, E2, E3 in (5.20) and (5.21) is a positively polarized right orthonormal

frame. This fact follows from Ŝ ∈ SO+(1, 3, R) and from (5.10). Therefore the
frame association (5.21) is a special case for the scheme presented by the first line
in the diagram (4.3).

The extended frame Ξ1, Ξ2, Ξ3, Ξ4 is related to the previously defined frames
Ψ1, Ψ2, Ψ3, Ψ4 and Φ̃1, Φ̃2, Φ̃3, Φ̃4 as follows

Ξi =

4
∑

j=1

Ŝ
j
i Ψj , Ξi =

4
∑

j=1

ˇ̃
S

j

i Φ̃j . (5.22)
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The matrices Ŝ and ˇ̃
S in (5.22) are four-dimensional extensions of the matrices

(5.14) and (5.14). They are block-diagonal matrices constructed with the use of

the two-dimensional matrices Ŝ and ˇ̃
S. Here are the explicit formulas for them:

Ŝ =
1√
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

e
iϕ+iθ

2 −e
i ϕ−i θ

2 0 0

e
i θ−i ϕ

2 e
−i θ−i ϕ

2 0 0

0 0 e
i ϕ+i θ

2 −e
i ϕ−i θ

2

0 0 e
i θ−i ϕ

2 e
−i θ−i ϕ

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (5.23)

ˇ̃
S =

i√
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−e
i ϕ−i θ

2 e
i ϕ+i θ

2 0 0

e
−i θ−i ϕ

2 e
i θ−i ϕ

2 0 0

0 0 −e
i ϕ−i θ

2 e
i ϕ+i θ

2

0 0 e
−i θ−i ϕ

2 e
i θ−i ϕ

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.24)

The matrix (5.16) has an analogous four-dimensional extension. Here is the explicit
formula for such an extension:

S̃ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

i cos θ sin θ e
iϕ

0 0

− sin θ e
−iϕ −i cos θ 0 0

0 0 i cos θ sin θ e
iϕ

0 0 − sin θ e
−iϕ −i cos θ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.25)

The matrix (5.25) is also a block-diagonal matrix. It is used in the following tran-

sition formula relating the frames Ψ1, Ψ2, Ψ3, Ψ4 and Φ̃1, Φ̃2, Φ̃3, Φ̃4:

Φ̃i =

4
∑

j=1

S̃
j
i Ψj . (5.26)

The formula (5.26) is an extension for the second formula (2.10). It coincides with
the second formula (4.15). As for the matrices (5.23), (5.24), and (5.25), being
extensions of the matrices (5.14), (5.15), and (5.16), they satisfy the relationship
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(5.17). The matrix (5.25) can be produced from (4.16) by passing to the angular
variables (5.2).

Let’s recall that the frame Y0, Y1, Y2, Y3 has no canonically associated spinor
frame in SM (since it is left oriented), but has an associated frame Φ1, Φ2, Φ3, Φ4

in DM (see (4.13) above). For this reason we can write

Ξi =
4

∑

j=1

Š
j
i Φj . (5.27)

The matrix Š in (5.27) is given by the following formula:

Š =
i√
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 0 −e
i ϕ−i θ

2 e
i ϕ+i θ

2

0 0 e
−i θ−i ϕ

2 e
i θ−i ϕ

2

−e
i ϕ−i θ

2 e
i ϕ+i θ

2 0 0

e
−i θ−i ϕ

2 e
i θ−i ϕ

2 0 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.28)

As we see, the matrix (5.28) is not block-diagonal. It is because the frame pair
(4.13) corresponds to the second line in the diagram (4.3).

6. Metric connection and its spinor components.

In previous sections we considered three local chart in the spherical universe
M = R × S3 — two charts with stereographic coordinates and one chart with
spherical coordinates. Considering Dirac spinors, we have equipped these local
charts with three associated frame pairs (see (4.11), (4.13), and (5.21) above). Our
next goal is to calculate the components of the metric connection (Γ, A, Ā) in each
of these three frame pairs.

Spinor extension of the metric connection has three groups of components: spa-
cial components Γk

ij , spinor components Ab
ia, and conjugate spinor components Āā

i b̄
.

Assume for a while that we have some arbitrary frame pair

Ψ1, Ψ2, Ψ3, Ψ4 − X0, X1, X2, X3, (6.1)

where Ψ1, Ψ2, Ψ3, Ψ4 is a spinor frame in DM and X0, X1, X2, X3 is a spacial
frame in TM . They can be either associated or non-associated frames. In any case
the conjugate spinor components Āā

i b̄
are expressed through spinor components in

an elementary way through complex conjugation:

Āā
i b̄

= Aā
i b̄. (6.2)

Due to the formula (6.2) it is sufficient to know Γk
ij and Ab

ia for to describe the

metric connection completely. The spacial components Γk
ij correspond to the well-
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known Levi-Civita connection in TM . They are given by the formula

Γk
ij =

3
∑

r=0

gkr

2

(

LXi
(grj) + LXj

(gir) − LXr
(gij)

)

+

+
c k
ij

2
−

3
∑

r=0

3
∑

s=0

c s
ir

2
gkr gsj −

3
∑

r=0

3
∑

s=0

c s
jr

2
gkr gsi

(6.3)

(see [4]). The Levi-Civita connection is a torsion-free connection. Nevertheless, its
components Γk

ij in (6.3) are not symmetric: Γk
ij −Γk

ji = c k
ij . It is because in general

case the tangent frame X0, X1, X2, X3 in the pair (6.1) is not commutative (see
(1.16) above).

Now let’s proceed to the spinor components Ab
ia of our metric connection. These

components are given by the formula

Aa
ib =

4
∑

α=1

4
∑

β=1

LXi
(dαβ) dβα

8
δa
b −

4
∑

α=1

4
∑

β=1

4
∑

d=1

LXi
(dαβ) dβd Hα

d

8
Ha

b −

−
4

∑

c=1

4
∑

d=1

4
∑

r=1

dbc LXi
(Hc

d)Hd
r dra

4
+

3
∑

m=0

3
∑

n=0

4
∑

α=1

LXi
(γ α

bm gmn)

4
×

× γ a
αn +

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γn

is gms γ a
αn

4

(6.4)

(see [4] for more details). This is a general formula applicable to an arbitrary
frame pair (6.1). In our particular case all of our three frame pairs, which we
study in this section, are special ones. They are canonically associated frame pairs
described by the first and second lines in the diagram (4.3). In each such frame pair
the components of the basic fields g, d, H, D, and γ are constants (see formulas
(1.15), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), and (4.10)). Therefore, their derivatives
LXi

are identically zero. As a result the formulas (6.3) and (6.4) are reduced to

Γk
ij =

c k
ij

2
−

3
∑

r=0

3
∑

s=0

c s
ir

2
gkr gsj −

3
∑

r=0

3
∑

s=0

c s
jr

2
gkr gsi, (6.5)

Aa
ib =

3
∑

m=0

3
∑

n=0

4
∑

α=1

3
∑

s=0

γ α
bm Γn

is gms γ a
αn

4
. (6.6)

The metric connection with the components (6.5) and (6.6) produces two curvature
tensors. Here are the formulas for their components:

Rp
qij = LXi

(Γp
j q) − LXj

(Γp
i q) +

3
∑

h=0

(

Γp
i h Γh

j q − Γp
j h Γh

i q

)

−
3

∑

k=0

c k
ij Γp

kq, (6.7 )

R
p
qij = LXi

(Ap
j q) − LXj

(Ap
i q) +

4
∑

h=1

(

Ap
i h Ah

j q −Ap
j h Ah

i q

)

−
3

∑

k=0

c k
ij Ap

kq . (6.8)
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The formula (6.7) yields the components of the well-known Riemannian curvature
tensor, while (6.8) are the components of its spinor extension. As appears, the
tensors R and R are related to each other as follows:

R
p
qij =

1

4

3
∑

m=0

3
∑

n=0

3
∑

r=0

4
∑

α=1

Rr
mij γα

qn gmn γp
αr (6.9)

(see proof of the formula (6.9) in [4]). Unlike (6.5) and (6.6), the formulas (6.7),
(6.8), and (6.9) are applicable to an arbitrary frame pair (6.1).

The next step now is to apply the above formulas to our three local charts and
three frame pairs and get some formulas specific to the homogeneous and isotropic
spherical universe M = R × S3.

1. Stereographic coordinates in projection from the North Pole. We denote
these coordinates with x0, x1, x2, x3. Their domain is the whole sphere S3 except
for the North Pole itself. The frames (4.11) are defined and smooth in this domain.
This frame pair is linked to the coordinates x0, x1, x2, x3. The commutation coef-
ficients for the frame X0, X1, X2, X3 in this pair are given by the formulas (1.17).
Now we substitute these coefficients into the formula (6.5). As a result we get the
following complete list of nonzero Γ-components of the metric connection in the
non-holonomic frame X0, X1, X2, X3:

Γ0
11 =

R′

R2
, Γ0

22 =
R′

R2
, Γ0

33 =
R′

R2
,

Γ1
10 =

R′

R2
, Γ2

20 =
R′

R2
, Γ3

30 =
R′

R2
,

Γ1
22 =

(x1)

R2
, Γ2

33 =
(x2)

R2
, Γ3

11 =
(x3)

R2
,

(6.10)

Γ2
11 =

(x2)

R2
, Γ3

22 =
(x3)

R2
, Γ1

33 =
(x1)

R2
,

Γ1
12 = − (x2)

R2
, Γ2

23 = − (x3)

R2
, Γ3

31 = − (x1)

R2
,

Γ2
21 = − (x1)

R2
, Γ3

32 = − (x2)

R2
, Γ1

13 = − (x2)

R2
.

Here R′ is the derivative of the function (1.10). Substituting (6.10) into (6.6), we
derive the explicit formulas for A-components of the metric connection:

A1
11 = − i (x2)

2 R
, A1

21 =
i (x1)

2 R
, A1

31 =
R′

2 R2
,

A2
12 =

i (x2)

2 R
, A2

22 = − i (x1)

2 R
, A2

32 = − R′

2 R2
,

(6.11)

A3
13 = − i (x2)

2 R
, A3

23 =
i (x1)

2 R
, A3

33 = − R′

2 R2
,

A4
14 =

i (x2)

2 R
, A4

24 = − i (x1)

2 R
, A4

34 =
R′

2 R2
,
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A1
12 =

R′

2 R2
+

(x3)

2 R
, A2

11 =
R′

R2
− (x3)

2 R
,

A3
14 = − R′

2 R2
+

(x3)

2 R
, A4

13 = − R′

2 R2
− (x3)

2 R
,

A1
22 = − i R′

2 R2
− i (x3)

2 R
, A2

21 =
i R′

2 R2
− i (x3)

2 R
,

(6.12 )

A3
24 =

i R′

2 R2
− i (x3)

2 R
, A4

23 = − i R′

2 R2
− i (x3)

2 R
,

A1
32 = − (x1)

2 R
+

i (x2)

2 R
, A2

31 =
(x1)

2 R
+

i (x2)

2 R
,

A3
34 = − (x1)

2 R
+

i (x2)

2 R
, A4

33 =
(x1)

2 R
+

i (x2)

2 R
.

Substituting (6.10) into (6.7), we find the components of the Riemannian curvature
tensor R. Its nonzero components are listed here:

R0
101 = −R0

110 = − (R′)2

R4
+

R′′

R3
, R1

001 = −R1
010 = − (R′)2

R4
+

R′′

R3
,

R0
202 = −R0

220 = − (R′)2

R4
+

R′′

R3
, R2

002 = −R2
020 = − (R′)2

R4
+

R′′

R3
,

R0
303 = −R0

330 = − (R′)2

R4
+

R′′

R3
, R3

003 = −R3
030 = − (R′)2

R4
+

R′′

R3
,

(6.13)

R1
212 = −R1

221 =
1

R2
+

(R′)2

R4
, R2

112 = −R2
121 = − 1

R2
− (R′)2

R4
,

R2
323 = −R2

333 =
1

R2
+

(R′)2

R4
, R3

223 = −R3
232 = − 1

R2
− (R′)2

R4
,

R3
131 = −R3

113 =
1

R2
+

(R′)2

R4
, R1

331 = −R1
313 = − 1

R2
− (R′)2

R4
.

The next step is to substitute (6.11) and (6.12) into (6.8). As a result we derive
the explicit formulas for the components of the spinor curvature tensor R. Below
is the list of all its nonzero components:

R
1
201 = −R

1
210 = − (R′)2

2 R4
+

R′′

2 R3
, R

2
101 = −R

2
110 = − (R′)2

2 R4
+

R′′

2 R3
,

R
3
401 = −R

3
410 =

(R′)2

2 R4
− R′′

2 R3
, R

4
301 = −R

4
310 = − (R′)2

2 R4
+

R′′

2 R3
,

R
1
202 = −R

1
220 =

i (R′)2

2 R4
− i R′′

2 R3
, R

2
102 = −R

2
120 = − i (R′)2

2 R4
+

i R′′

2 R3
, (6.14)

R
3
402 = −R

3
420 = − i (R′)2

2 R4
+

i R′′

2 R3
, R

4
302 = −R

4
320 =

i (R′)2

2 R4
− i R′′

2 R3
,

R
1
103 = −R

1
130 = − (R′)2

2 R4
+

R′′

2 R3
, R

2
203 = −R

2
230 =

(R′)2

2 R4
− R′′

2 R3
,
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R
3
303 = −R

3
330 =

(R′)2

2 R4
− R′′

2 R3
, R

4
403 = −R

4
430 = − (R′)2

2 R4
+

R′′

2 R3
,

R
1
112 = −R

1
121 =

i

2 R2
+

i (R′)2

2 R4
, R

2
212 = −R

2
221 = − i

2 R2
− i (R′)2

2 R4
,

R
3
312 = −R

3
321 =

i

2 R2
+

i (R′)2

2 R4
, R

4
412 = −R

4
421 = − i

2 R2
− i (R′)2

2 R4
,

R
1
223 = −R

1
232 =

i

2 R2
+

i (R′)2

2 R4
, R

2
123 = −R

2
132 =

i

2 R2
+

i (R′)2

2 R4
, (6.15)

R
3
423 = −R

3
432 =

i

2 R2
+

i (R′)2

2 R4
, R

4
323 = −R

4
332 =

i

2 R2
+

i (R′)2

2 R4
,

R
1
231 = −R

1
213 =

1

2 R2
+

(R′)2

2 R4
, R

2
131 = −R

2
131 = − 1

2 R2
− (R′)2

2 R4
,

R
3
431 = −R

3
413 =

1

2 R2
+

(R′)2

2 R4
, R

4
331 = −R

4
331 = − 1

2 R2
− (R′)2

2 R4
.

One can verify the relationship (6.9) by direct calculations as a test for consistency
of (6.13), (6.14), and (6.15). The Ricci tensor is an important object in general
relativity. It is used in Einstein’s equation (see [1] or [5]). Using (6.13), we can
calculate the components of the Ricci tensor in the frame X0, X1, X2, X3. As
appears, the matrix of the Ricci tensor is diagonal. Here are its diagonal elements

R00 =
3 (R′)2

R4
− 3 R′′

R3
, R11 =

2

R2
+

(R′)2

R4
+

R′′

R3
,

(6.16)

R22 =
2

R2
+

(R′)2

R4
+

R′′

R3
, R33 =

2

R2
+

(R′)2

R4
+

R′′

R3
.

And finally, using (6.16), we find the scalar curvature:

R scalar = − 6

R2
− 6 R′′

R3
. (6.17)

This formula (6.17) coincides with the formula for the scalar curvature derived in
§ 112 of the book [1].

2. Stereographic coordinates in projection from the South Pole. We denote
these coordinates with y0, y1, y2, y3. Their domain is the whole sphere S3 except
for the South Pole. The frames (4.13) are defined and smooth in this domain. This
frame pair is linked to the coordinates y0, y1, y2, y3. The commutation coefficients
for the frame Y0, Y, Y2, Y3 in this pair are given by the formulas (1.19). Other
formulas (6.10), (6.11), (6.12), (6.13), (6.14), (6.15), (6.16), and (6.17) are valid in
this case upon changing x0, x1, x2, x3 for y0, y1, y2, y3 in them.

3. Spherical coordinates. We denote these coordinates with η0, η1, η2, η3

and also use special notations (5.1) and (5.2) for separate coordinates. The domain
of spherical coordinates is the whole sphere S3 except for both poles North and
South. The frame pair (5.21) is used for spherical coordinates. The frames of this
pair are defined and smooth in the domain of the spherical coordinates. The com-
mutation coefficients for the frame E0, E, E2, E3 are given by the formulas (5.9).
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Substituting them into (6.5) we find the Γ-components of the metric connection in
the frame E0, E, E2, E3. Here is the list of nonzero ones of them:

Γ0
11 =

R′

R2
, Γ0

22 =
R′

R2
, Γ0

33 =
R′

R2
,

Γ1
10 =

R′

R2
, Γ2

20 =
R′

R2
, Γ3

30 =
R′

R2
,

(6.18)

Γ1
22 = − cosχ

R sin χ
, Γ2

33 = − cos θ

R sin χ sin θ
, Γ2

21 =
cosχ

R sin χ
,

Γ1
33 = − cosχ

R sin χ
, Γ3

32 =
cos θ

R sinχ sin θ
, Γ3

31 =
cosχ

R sin χ
.

Now we substitute (6.18) into (6.6) in order to get the A-components of the metric
connection. Below is the list of nonzero ones of these components:

A1
12 =

R′

2 R2
, A2

11 =
R′

2 R2
,

A3
14 = − R′

2 R2
, A4

13 = − R′

2 R2
,

A1
21 = − i cosχ

2 R sin χ
, A2

22 =
i cosχ

2 R sinχ
,

A3
23 = − i cosχ

2 R sin χ
, A4

24 =
i cosχ

2 R sinχ
,

(6.19)

A1
22 = − i R′

2 R2
, A2

21 =
i R′

2 R2
,

A3
24 =

i R′

2 R2
, A4

23 = − i R′

2 R2
,

A1
31 =

R′

2 R2
, A2

32 = − R′

2 R2
,

A3
33 = − R′

2 R2
, A4

34 =
R′

2 R2
,

A1
32 =

cosχ

2 R sin χ
− i cos θ

2 R sinχ sin θ
,

A2
31 = − cosχ

2 R sin χ
− i cos θ

2 R sin χ sin θ
,

(6.20)

A3
34 =

cosχ

2 R sin χ
− i cos θ

2 R sinχ sin θ
,

A4
33 = − cosχ

2 R sin χ
− i cos θ

2 R sin χ sin θ
.

The formulas (6.19) and (6.20) are analogs of (6.11) and (6.12) Using the Γ-
components of the metric connection (6.18) and applying the formula (6.7) to them,
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we derive the explicit formulas for the components of the Riemannian curvature
tensor. Here is the list of nonzero components of R:

R0
101 = −R0

110 = − (R′)2

R4
+

R′′

R3
, R1

001 = −R1
010 = − (R′)2

R4
+

R′′

R3
,

R0
202 = −R0

220 = − (R′)2

R4
+

R′′

R3
, R2

002 = −R2
020 = − (R′)2

R4
+

R′′

R3
,

R0
303 = −R0

330 = − (R′)2

R4
+

R′′

R3
, R3

003 = −R3
030 = − (R′)2

R4
+

R′′

R3
,

(6.21)

R1
212 = −R1

221 =
1

R2
+

(R′)2

R4
, R2

112 = −R2
121 = − 1

R2
− (R′)2

R4
,

R2
323 = −R2

333 =
1

R2
+

(R′)2

R4
, R3

223 = −R3
232 = − 1

R2
− (R′)2

R4
,

R3
131 = −R3

113 =
1

R2
+

(R′)2

R4
, R1

331 = −R1
313 = − 1

R2
− (R′)2

R4
.

Comparing (6.21) with (6.13), we find that these formulas are identical. Though
written for two different frames X0, X1, X2, X3 and E0, E1, E2, E3, the com-
ponents of the curvature tensor R do coincide. Then the same is true for the
components of the Ricci tensor and the scalar curvature, i. e. they are given by the
formulas (6.16) and (6.17) in spherical coordinates1. Applying the formula (6.9),
we conclude that the components of the spinor curvature tensor R in spherical co-
ordinates should coincide with those calculated for stereographic coordinates. They
are given by the formulas (6.14) and (6.15).
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