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ON KILLING VECTOR FIELDS OF A HOMOGENEOUS

AND ISOTROPIC UNIVERSE IN CLOSED MODEL.

R. A. Sharipov

Abstract. Killing vector fields of a closed homogeneous and isotropic universe are
studied. It is shown that in general case there is no time-like Killing vector fields in
such a universe. Two exceptional cases are revealed.

1. Introduction.

Killing vector fields (infinitesimal isometries) are used in building vacuum states
for quantum fields in a curved space-time (see [1] and [2]). We study a homo-
geneous and isotropic universe as an example of such a curved space-time. This

universe is diffeomorphic to the
Cartesian product M = R × S3

(see § 111 and § 112 in [3]). Its
spinor structure was studied in
[4]. We use some technique from
[4] in present paper. In particu-
lar, we use the stereographic co-
ordinates x0, x1, x2, x3 and y0,
y1, y2, y3 as two local charts co-
vering the whole universe. We
call them North Pole stereogra-

phic coordinates and South Pole

stereographic coordinates respec-
tively. The domain of the North
Pole stereographic coordinates
x0, x1, x2, x3 is the whole sphe-
re S3 except for one point, which

is called the North Pole. Similarly, the South Pole stereographic coordinates are
defined on the whole sphere S3 except for the diametrically opposite point, which
is called the South Pole. Below are the transition functions relating the North Pole
and South Pole stereographic coordinates in the intersection of their domains:
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2 R. A. SHARIPOV

Here |x|2 = (x1)2 + (x2)2 + (x3)2 and |y|2 = (y1)2 + (y2)2 + (y3)2. The Minkowski
type metric g in M is given by the following formulas:

ds2 = R2 (dx0)2 −
4 R2 (dx1)2 + 4 R2 (dx2)2 + 4 R2 (dx3)2

(|x|2 + 1)
2

, (1.2)

ds2 = R2 (dy0)2 −
4 R2 (dy1)2 + 4 R2 (dy2)2 + 4 R2 (dy3)2

(|y|2 + 1)
2

. (1.3)

Looking at (1.2) and (1.3), we see that the formulas for metric in two different stere-
ographic coordinates are very similar. Therefore, we can derive some formulas in
North Pole stereographic coordinates and then transform them to South Pole coor-
dinates by substituting y0, y1, y2, y3 for x0, x1, x2, x3 without use of the transition
functions (1.1). The parameter R in the formulas (1.2) and (1.3) is interpreted as
the radius of the sphere S3 in its realization as a hypersurface in the Euclidean
space R

4. This parameter is not a constant:

R = R(x0) = R(y0). (1.4)

According to [3], the time variable t is introduced through the following formula:

R dx0 = R dy0 = c dt (c is the light velocity). (1.5)

Then we can write (1.4) as R = R(t). If R(t) is constant, we say that the universe is
stable, if R(t) is an increasing function, we say that the universe is expanding, and
if R(t) is a decreasing function, we say that the universe is contracting. Oscillatory
regimes are also possible. The main goal in this paper is to study under which
conditions for the function (1.4) the universe M = R×S3 has at least one time-like
Killing vector field.

2. Connection components and the curvature tensor.

The metric tensor g is determined by a diagonal matrix gij in North Pole stere-
ographic coordinates. Its components are determined by the formula (1.2):

g00 = R2, g11 = g22 = g33 = −
4 R2

(|x|2 + 1)2
. (2.1)

The dual metric tensor g is also given by a diagonal matrix:

g00 =
1

R2
, g11 = g22 = g33 = −

(|x|2 + 1)2

4 R2
. (2.2)

Now we choose the following well-known formula in order to calculate the compo-
nents of the symmetric Levi-Civita connection:

Γk
ij =

3
∑

s=0

gks

2

(

∂gis

∂xj
+

∂gsj

∂xi
−

∂gij

∂xs

)

. (2.3)
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Note that, unlike [4], here we do not use non-holonomic frames since we do not
need to deal with spinors in this paper. Applying (2.3) to (2.1) and (2.2), we get
the following complete list of the nonzero components of Γk

ij :

Γ0

11
=

4 R′

R (|x|2 + 1)2
, Γ0

22
=

4 R′

R (|x|2 + 1)2
, Γ0

33
=

4 R′

R (|x|2 + 1)2
,

Γ1

11
= −

2 (x1)

|x|2 + 1
, Γ1

22
=

2 (x1)

|x|2 + 1
, Γ1

33
=

2 (x1)

|x|2 + 1
,

(2.4)

Γ2

11
=

2 (x2)

|x|2 + 1
, Γ2

22
= −

2 (x2)

|x|2 + 1
, Γ2

33
=

2 (x2)

|x|2 + 1
,

Γ3

11 =
2 (x3)

|x|2+)
, Γ3

22 =
2 (x3)

|x|2 + 1
, Γ3

33 = −
2 (x3)

|x|2 + 1
,

Γ2

12 = Γ2

21 = −
2 (x1)

|x|2 + 1
, Γ3

13 = Γ3

31 = −
2 (x1)

|x|2 + 1
,

Γ3

23
= Γ3

32
= −

2 (x2)

|x|2 + 1
, Γ1

21
= Γ1

12
= −

2 (x2)

|x|2 + 1
,

Γ1

31 = Γ1

13 = −
2 (x3)

|x|2 + 1
, Γ2

32 = Γ2

23 = −
2 (x3)

|x|2 + 1
, (2.5)

Γ0

00 =
R′

R
, Γ1

01 = Γ1

10 =
R′

R
,

Γ2

02
= Γ2

20
=

R′

R
, Γ3

03
= Γ3

30
=

R′

R
.

Note that here we have 31 nonzero connection components, while in [4] in the case
of a non-holonomic frame we had 18.

The next step is to calculate the components of the Riemannian curvature tensor
R. They are given by the well-known formula

Rp
qij =

∂Γp
j q

∂xi
−

∂Γp
i q

∂xj
+

3
∑

h=0

(

Γp
i h Γh

j q − Γp
j h Γh

i q

)

. (2.6)

Applying (2.6) to (2.4) and (2.5), we derive the following expressions

R0

101
= −R0

110
= 4

R′′ R − (R′)2

R2 (|x|2 + 1)2
, R1

001
= −R1

010
=

R′′ R − (R′)2

R2
,

R0

202
= −R0

220
= 4

R′′ R − (R′)2

R2 (|x|2 + 1)2
, R2

002
= −R2

020
=

R′′ R − (R′)2

R2
, (2.7)

R0

303 = −R0

330 = 4
R′′ R − (R′)2

R2 (|x|2 + 1)2
, R3

003 = −R3

030 =
R′′ R − (R′)2

R2
,
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R1

212
= −R1

221
= R2

121
= −R2

112
= 4

(R′)2 + R2

R2 (|x|2 + 1)2
,

R2

323 = −R2

332 = R3

232 = −R3

223 = 4
(R′)2 + R2

R2 (|x|2 + 1)2
, (2.8)

R3

131
= −R3

113
= R1

313
= −R1

331
= 4

(R′)2 + R2

R2 (|x|2 + 1)2
.

Using the above formulas (2.7) and (2.8), we can calculate the components of the
Ricci tensor. Here is the list of nonzero ones of them:

R00 =
3 (R′)2 − 3 R R′′

R2
, R11 =

8 R2 + 4 (R′)2 + 4 R R′′

R2 (|x|2 + 1)2
,

(2.9)

R22 =
8 R2 + 4 (R′)2 + 4 R R′′

R2 (|x|2 + 1)2
, R33 =

8 R2 + 4 (R′)2 + 4 R R′′

R2 (|x|2 + 1)2
.

And finally, using (2.9), we calculate the scalar curvature:

R scalar = −
6

R2
−

6 R′′

R3
. (2.10)

As we see, the scalar curvature given by the formula (2.10) coincides with the scalar
curvature calculated in [1] and [4] for this particular model of the universe.

3. Differential equations for Killing vector fields.

Killing vector fields are also known as infinitesimal isometries. Local one-parame-
tric diffeomorphism groups generated by these vector fields are composed by isome-
tries — they preserve the metric g. Therefore, if X is a Killing vector field in M ,
then the Lie derivative LX, when applied to g, yields zero:

LX(g) = 0. (3.1)

In the coordinate form the equation (3.1) is written as follows:

3
∑

s=0

Xs ∂gij

∂xs
+

3
∑

s=0

gsj

∂Xs

∂xi
+

3
∑

s=0

gis

∂Xs

∂xj
= 0. (3.2)

Let’s replace the partial derivatives in (3.2) with the covariant derivatives:

∂gij

∂xs
= ∇sgij +

3
∑

k=0

Γk
si gkj +

3
∑

k=0

Γk
sj gik, (3.3)

∂Xs

∂xi
= ∇iX

s −

3
∑

k=0

Γs
ik Xk, (3.4)

∂Xs

∂xj
= ∇jX

s −

3
∑

k=0

Γs
jk Xk. (3.5)
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Substituting (3.3), (3.4), and (3.5) into (3.2) and taking into account the symmetry
of gij and Γk

ij with respect to the indices i and j, we get

∇sgij +

3
∑

s=0

gsj ∇iX
s +

3
∑

s=0

gis ∇jX
s = 0. (3.6)

Now let’s remember that the metric g is concordant with its metric connection Γ,
i. e. ∇g = 0. As a result the equation (3.6) is reduced to

3
∑

s=0

gsj ∇iX
s +

3
∑

s=0

gis ∇jX
s = 0. (3.7)

In a metric manifold each vector field X is associated with some unique covector
field. This covector field is usually denoted by the same symbol X. The components
of such two associated vectorial and covectorial fields are related to each other
through the index lowering and index raising procedures:

Xi =
3

∑

j=0

gij Xj , X i =
3

∑

j=0

gij Xj . (3.8)

Applying (3.8) to (3.7) and taking into account that ∇g = 0, we derive

∇iXj + ∇jXi = 0. (3.9)

The equation (3.9) is a basic equation for Killing vector fields we are going to
study in this paper. It is written in the covectorial form. Let’s denote

∇iXj = Yij for i < j. (3.10)

In terms of (3.10) the equation (3.9) can be rewritten in the following form:

∇iXj =











Yij for i < j,

0 for i = j,

−Yj i for i > j.

(3.11)

The equations (3.11) look like a Pfaff system of first order PDE’s if we treat Yij as
new undetermined functions. However, in this case we need to write the differential
equations for these functions. For this purpose let’s differentiate (3.9):

∇k∇iXj + ∇k∇jXi = 0. (3.12)

Then we triplicate the equations (3.12) by means of the cyclic transposition of
indices: i → j → k → i. As a result we get other two copies of the equation (3.12):

∇i∇jXk + ∇i∇kXj = 0, (3.13)

∇j∇kXi + ∇j∇iXk = 0. (3.14)
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Now let’s add (3.13) and (3.14), then subtract (3.12) from them. As a result we get

∇i∇jXk + ∇j∇iXk = (∇k∇i −∇i∇k)Xj + (∇k∇j −∇j∇k)Xi. (3.15)

In order to transform the equality (3.15) we use the following well-known identity:

(∇i∇j −∇j∇i)Xk = −

3
∑

s=0

Rs
kij Xs. (3.16)

Here Rs
kij are the components of the Riemannian curvature tensor R (see (2.6),

(2.7), and (2.8) above). Applying (3.16) to (3.15), we derive

2∇i∇jXk = −

3
∑

s=0

Rs
kij Xs −

3
∑

s=0

Rs
jki Xs −

3
∑

s=0

Rs
ikj Xs. (3.17)

Now let’s recall the following identities:

Rs
ijk + Rs

ikj = 0, Rs
ijk + Rs

kij + Rs
jki = 0. (3.18)

These are the well-known identities for the components of the curvature tensor.
Their proof can be found in [5]. Applying (3.18) to (3.17), we get

∇i∇jXk =

3
∑

s=0

Rs
ijk Xs. (3.19)

If we remember the notations (3.10), then (3.19) can be rewritten as

∇iYjk =
3

∑

s=0

Rs
ijk Xs. (3.20)

Both (3.11) and (3.20) form a complete system of Pfaff equations for ten functions
X0, X1, X2, X3, Y01, Y02, Y03, Y12, Y13, Y23. The following theorem is an immedi-
ate consequence of this observation.

Theorem 3.1. A four-dimensional space-time manifold M can have at most ten

linearly independent Killing vector fields.

The actual number of isometries depends on the so-called compatibility condi-
tions for the Pfaff equations (3.11) and (3.20). In order to derive these compatibility
conditions, let’s calculate ∇i∇jXk − ∇j∇iXk and ∇i∇jYpq − ∇j∇iYpq on the base
of the Pfaff equations (3.11) and (3.20). The inequalities in (3.11) produce many
special cases that should be studied separately. In order to avoid this inconvenience
we extend the definition of Yij . In (3.10) they are defined for i < j. Let’s set

Yij =

{

0 for i = j;

−Yji for i > j.
(3.21)

Due to the extension (3.21) of (3.10) we can write (3.11) as

∇iXj = Yij (3.22)
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for all i and j, but we should keep in mind that only 6 of 16 components of the
skew-symmetric tensorial field Y are independent. Due to the skew symmetry
Rs

ijk = −Rs
ikj the extension (3.21) of (3.10) and the extension (3.22) of (3.11) are

compatible with (3.20). Now for ∇i∇jXk −∇j∇iXk we have

∇i∇jXk −∇j∇iXk = ∇iYjk −∇jYik. (3.23)

Applying the equation (3.20) to the right hand side of (3.23) and applying the
identity (3.16) to its left hand side, we derive

−
3

∑

s=0

Rs
kij Xs =

3
∑

s=0

Rs
ijk Xs −

3
∑

s=0

Rs
jik Xs. (3.24)

It is easy to see that the compatibility condition (3.24) is fulfilled identically due
to the properties (3.18) of the curvature tensor R.

Now we proceed to the compatibility conditions derived from ∇i∇jYpq−∇j∇iYpq.
In this case, applying the equation (3.20), we get

∇i∇jYpq −∇j∇iYpq =

3
∑

s=0

∇i(R
s
jpq Xs) −

3
∑

s=0

∇j(R
s
ipq Xs). (3.25)

The left hand side of the equality (3.25) is transformed by means of the identity

∇i∇jYpq −∇j∇iYpq = −

3
∑

s=0

Rs
pij Ysq −

3
∑

s=0

Rs
qij Yps. (3.26)

The identity (3.26) is a tensorial generalization of (3.16). Applying (3.26) to (3.25)
and taking into account (3.22), we transform (3.25) as follows:

−

3
∑

s=0

Rs
pij Ysq −

3
∑

s=0

Rs
qij Yps =

3
∑

s=0

∇iR
s
jpq Xs +

+

3
∑

s=0

Rs
jpq Yis −

3
∑

s=0

∇jR
s
ipq Xs −

3
∑

s=0

Rs
ipq Yjs.

(3.27)

The equality (3.27) is a non-trivial compatibility condition for the system of Pfaff
equations (3.22) and (3.20). In the next section we shall study this equality for our
particular case, where M = R × S3.

4. Simplifying the compatibility conditions.

Note that the compatibility equations (3.27) contain the covariant derivatives
of the curvature tensor. Therefore, we begin our study of (3.27) with calculating
these covariant derivatives. They are given by the formula:

∇sR
p
qij =

Rp
qij

∂xs
+

3
∑

h=0

Γp
sh Rh

qij −

3
∑

h=0

Γh
sq Rp

hij −

3
∑

h=0

Γh
si Rp

qhj −

3
∑

h=0

Γh
sj Rp

qih.
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We substitute (2.4), (2.5), (2.7), and (2.8) into this formula and get the following
list of nonzero components ∇sR

p
qij in North Pole stereographic coordinates:

∇0R
0

101 = −∇0R
0

110 = ∇0R
0

202 =

= −∇0R
0

220
= ∇0R

0

303
= −∇0R

0

330
=

=
16 (R′)3 − 20 R′′ R′ R + 4 R′′′ R2

R3 (|x|2 + 1)2
,

(4.1)

∇0R
1

001 = −∇0R
1

010 = ∇0R
2

002 =

= −∇0R
2

020 = ∇0R
3

003 = −∇0R
3

030 =

=
4 (R′)3 − 5 R′′ R′ R + R′′′ R2

R3
,

(4.2)

∇0R
1

212 = −∇0R
1

221 = ∇0R
2

121 = −∇0R
2

112 =

∇0R
2

323 = −∇0R
2

332 = ∇0R
3

232 = −∇0R
3

223 =

∇0R
3

131 = −∇0R
3

113 = ∇0R
1

313 = −∇0R
1

331 =

=
−16 (R′)3 + 8 R′′ R′ R − 8 R′ R2

R3 (|x|2 + 1)2
,

(4.3)

∇1R
0

212
= −∇1R

0

221
= ∇2R

0

323
= −∇2R

0

332
=

∇3R
0

131
= −∇3R

0

113
= ∇1R

0

313
= −∇1R

0

331
=

∇2R
0

121
= −∇2R

0

112
= ∇3R

0

232
= −∇3R

0

223
=

=
32 (R′)3 − 16 R′′ R′ R + 16 R′ R2

R3 (|x|2 + 1)4
,

(4.4)

∇1R
2

012
= −∇1R

2

021
= ∇2R

3

023
= −∇2R

3

032
=

∇3R
1

031
= −∇3R

1

013
= ∇1R

3

013
= −∇1R

3

031
=

∇2R
1

021 = −∇2R
1

012 = ∇3R
2

032 = −∇3R
2

023 =

=
8 (R′)3 − 4 R′′ R′ R + 4 R′ R2

R3 (|x|2 + 1)2
,

(4.5)

∇1R
1

220 = −∇1R
1

202 = ∇2R
2

330 = −∇2R
2

303 =

∇3R
3

110 = −∇3R
3

101 = ∇1R
1

330 = −∇1R
1

303 =

∇2R
2

110 = −∇2R
2

101 = ∇3R
3

220 = −∇3R
3

202 =

=
8 (R′)3 − 4 R′′ R′ R + 4 R′ R2

R3 (|x|2 + 1)2
,

(4.6)
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∇1R
2

102
= −∇1R

2

120
= ∇2R

3

203
= −∇2R

3

230
=

∇3R
1

301
= −∇3R

1

310
= ∇1R

3

103
= −∇1R

3

130
=

∇2R
1

201
= −∇2R

1

210
= ∇3R

2

302
= −∇3R

2

320
=

=
8 (R′)3 − 4 R′′ R′ R + 4 R′ R2

R3 (|x|2 + 1)2
.

(4.7)

Now we substitute (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), and (4.7) into (3.27). We
also substitute (2.7) and (2.8) into (3.27). As a result we obtain a series of linear
algebraic equations for the functions X0, X1, X2, X3, Y01, Y02, Y03, Y12, Y13, Y23.
Since the expressions in both sides of (3.27) are skew-symmetric with respect to i
and j and with respect to p and q, we could have at most 36 mutually independent
equations. However, in our particular case the number of mutually independent
equations is 5. Here is the list of these five equations:

{

(

4 (R′)3 − 5 R′′ R′ R + R′′′ R2
)

X0 = 0,

R′
(

2 (R′)2 − R′′ R + R2
)

X0 = 0,
(4.8)











(

2 (R′)2 − R′′ R + R2
)

(R′ X1 − R Y01) = 0,
(

2 (R′)2 − R′′ R + R2
)

(R′ X2 − R Y02) = 0,
(

2 (R′)2 − R′′ R + R2
)

(R′ X3 − R Y03) = 0.

(4.9)

As we see the compatibility equations (4.8) and (4.9) depend essentially on the
function (1.4) and its derivatives. These simplified equations will be studied in the
next two sections.

5. Spacial rotations.

Note that the functions Y12, Y13, Y23 are not presented in the equations (4.8) and
(4.9). This fact reflects the spherical symmetry of our universe M = R × S3. It is
known that the sphere S3 has a 6-parametric group of isometries. These isometries
produce 6 linearly independent Killing vector fields corresponding to 3 meridional
and 3 equatorial rotations. Now we write these vector fields explicitly.

Meridional rotation in the plane z1Oz4. This rotation induces a Killing vector
field X in M expressed by the formula

X =
2 (x1)2 − |x|2 + 1

2

∂

∂x1
+ (x1) (x2)

∂

∂x2
+ (x1) (x3)

∂

∂x3
(5.1)

in the North Pole stereographic coordinates. Applying the index lowering procedure
(3.8) to the components of (5.1), we get the covectorial components of X:

X0 = 0, X1 = −
4 (x1)2 − 2 |x|2 + 2

(|x|2 + 1)2
R2,

(5.2)

X2 = −
4 (x1) (x2)

(|x|2 + 1)2
R2, X3 = −

4 (x1) (x3)

(|x|2 + 1)2
R2.



10 R. A. SHARIPOV

Then, using the formula (3.10), we calculate the functions Y01, Y02, Y03, Y12, Y13,
Y23 associated with the Killing vector field (5.1):

Y01 = −
2 RR′ (2 (x1)2 − |x|2 + 1)

(|x|2 + 1)2
, Y02 = −

4 RR′ (x1) (x2)

(|x|2 + 1)2
,

Y03 = −
4 RR′ (x1) (x3)

(|x|2 + 1)2
, Y12 = −

8 R2 (x2)

(|x|2 + 1)3
, (5.3)

Y23 = 0, Y13 = −
8 R2 (x3)

(|x|2 + 1)3
.

Let’s substitute x1 = x2 = x3 = 0 into (5.2) and (5.3). As a result we get

∥

∥

∥

∥

∥

∥

∥

X0

X1

X2

X3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

0
−2 R2

0
0

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y01

Y02

Y03

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

−2 RR′

0
0

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y12

Y13

Y23

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0
0

∥

∥

∥

∥

∥

∥

. (5.4)

The quantities listed in the formulas (5.4) can be treated as initial data for the
Pfaff equations (3.20) and (3.22).

Meridional rotation in the plane z2Oz4. This case is very similar to the
previous one. Here is the formula for the Killing vector field in this case:

X = (x2) (x1)
∂

∂x1
+

2 (x2)2 − |x|2 + 1

2

∂

∂x2
+ (x2) (x3)

∂

∂x3
. (5.5)

Below are the covariant components of the vector (5.5)

X0 = 0, X1 = −
4 (x2) (x1)

(|x|2 + 1)2
R2,

(5.6)

X2 = −
4 (x2)2 − 2 |x|2 + 2

(|x|2 + 1)2
R2, X3 = −

4 (x2) (x3)

(|x|2 + 1)2
R2.

Substituting (5.6) into (3.10) we obtain the functions Y01, Y02, Y03, Y12, Y13, Y23:

Y01 = −
4 RR′ (x2) (x1)

(|x|2 + 1)2
, Y02 = −

2 R R′ (2 (x2)2 − |x|2 + 1)

(|x|2 + 1)2
,

Y03 = −
4 RR′ (x2) (x3)

(|x|2 + 1)2
, Y12 =

8 R2 (x1)

(|x|2 + 1)3
, (5.7)

Y23 = −
8 R2 (x3)

(|x|2 + 1)3
, Y13 = 0.

By setting x1 = x2 = x3 = 0 in (5.6) and (5.7) we derive

∥

∥

∥

∥

∥

∥

∥

X0

X1

X2

X3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

0
0

−2 R2

0

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y01

Y02

Y03

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
−2 RR′

0

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y12

Y13

Y23

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0
0

∥

∥

∥

∥

∥

∥

. (5.8)



ON KILLING VECTOR FIELDS . . . 11

Like (5.4), the quantities (5.8) are initial data for the equations (3.20) and (3.22).
Meridional rotation in the plane z3Oz4. This case is also very similar to the

previous cases. Here is the formula for the Killing vector field in this case:

X = (x3) (x1)
∂

∂x1
+ (x3) (x2)

∂

∂x2
+

2 (x3)2 − |x|2 + 1

2

∂

∂x3
. (5.9)

Below are the covariant components of the vector (5.9):

X0 = 0, X1 = −
4 (x3) (x1)

(|x|2 + 1)2
R2,

(5.10)

X2 = −
4 (x3) (x2)

(|x|2 + 1)2
R2, X3 = −

4 (x3)2 − 2 |x|2 + 2

(|x|2 + 1)2
R2.

Now, substituting (5.10) into (3.10), we find Y01, Y02, Y03, Y12, Y13, Y23:

Y01 = −
4 RR′ (x3) (x1)

(|x|2 + 1)2
, Y02 = −

4 RR′ (x3) (x2)

(|x|2 + 1)2
,

Y03 = −
2 RR′ (2 (x3)2 − |x|2 + 1)

(|x|2 + 1)2
, Y12 = 0, (5.11)

Y23 =
8 R2 (x2)

(|x|2 + 1)3
, Y13 =

8 R2 (x1)

(|x|2 + 1)3
.

By setting x1 = x2 = x3 = 0 in (5.10) and (5.11) we obtain

∥

∥

∥

∥

∥

∥

∥

X0

X1

X2

X3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

0
0
0

−2 R2

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y01

Y02

Y03

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0

−2 RR′

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y12

Y13

Y23

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0
0

∥

∥

∥

∥

∥

∥

. (5.12)

The quantities (5.12) are initial data for the equations (3.20) and (3.22).
The next three cases are produced by the equatorial rotations. They are some-

what different from meridional ones.
Equatorial rotation in the plane z1Oz2. The Killing vector field in this case

is given by the following formula:

X = (x2)
∂

∂x1
− (x1)

∂

∂x2
. (5.13)

This formula is more simple than (5.1), (5.5), or (5.9). Here are the covariant
components of the vector field given by the formula (5.13):

X0 = 0, X1 = −
4 R2 (x2)

(|x|2 + 1)2
R2,

(5.14)

X2 =
4 R2 (x1)

(|x|2 + 1)2
R2, X3 = 0.
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Substituting (5.14) into (3.10), we calculate the functions Y01, Y02, Y03, Y12, Y13,
Y23 for the vector field given by the formula (5.13):

Y01 = −
4 RR′ (x2)

(|x|2 + 1)2
, Y02 =

4 R R′ (x1)

(|x|2 + 1)2
,

Y03 = 0, Y12 =
4 R2 (2 (x3)2 − |x|2 + 1)

(|x|2 + 1)3
, (5.15)

Y23 =
8 R2 (x3) (x1)

(|x|2 + 1)3
, Y13 = −

8 R2 (x3) (x2)

(|x|2 + 1)3
.

By setting x1 = x2 = x3 = 0 in (5.14) and (5.15), we obtain

∥

∥

∥

∥

∥

∥

∥

X0

X1

X2

X3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

0
0
0
0

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y01

Y02

Y03

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0
0

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y12

Y13

Y23

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

4 R2

0
0

∥

∥

∥

∥

∥

∥

. (5.16)

The quantities (5.16) are initial data for the equations (3.20) and (3.22).
Equatorial rotation in the plane z2Oz3. This case is very similar to the

previous one. Here is the formula for the Killing vector field in this case:

X = (x3)
∂

∂x2
− (x2)

∂

∂x3
. (5.17)

Below are the covariant components of the vector (5.17):

X0 = 0, X1 = 0,
(5.18)

X2 = −
4 R2 (x3)

(|x|2 + 1)2
R2, X3 =

4 R2 (x2)

(|x|2 + 1)2
R2.

Substituting (5.18) into (3.10), we calculate Y01, Y02, Y03, Y12, Y13, Y23:

Y01 = 0, Y02 = −
4 RR′ (x3)

(|x|2 + 1)2
,

Y03 =
4 RR′ (x2)

(|x|2 + 1)2
, Y12 =

8 R2 (x1) (x3)

(|x|2 + 1)3
, (5.19)

Y23 =
4 R2 (2 (x1)2 − |x|2 + 1)

(|x|2 + 1)3
, Y13 = −

8 R2 (x1) (x2)

(|x|2 + 1)3
.

By setting x1 = x2 = x3 = 0 in (5.18) and (5.19), we obtain

∥

∥

∥

∥

∥

∥

∥

X0

X1

X2

X3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

0
0
0
0

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y01

Y02

Y03

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0
0

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y12

Y13

Y23

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
4 R2

0

∥

∥

∥

∥

∥

∥

. (5.20)
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The quantities (5.20) are initial data for the equations (3.20) and (3.22).
Equatorial rotation in the plane z3Oz1. The Killing vector field in this last

case is given by the following formula:

X = −(x3)
∂

∂x1
+ (x1)

∂

∂x3
. (5.21)

Below are the covariant components of the vector (5.21):

X0 = 0, X1 =
4 R2 (x3)

(|x|2 + 1)2
R2,

(5.22)

X2 = 0, X3 = −
4 R2 (x2)

(|x|2 + 1)2
R2.

Substituting (5.22) into (3.10), we find the functions Y01, Y02, Y03, Y12, Y13, Y23:

Y01 =
4 R R′ (x3)

(|x|2 + 1)2
, Y02 = 0,

Y03 = −
4 R R′ (x1)

(|x|2 + 1)2
, Y12 =

8 R2 (x2) (x3)

(|x|2 + 1)3
, (5.23)

Y23 = −
8 R2 (x2) (x1)

(|x|2 + 1)3
, Y13 = −

4 R2 (2 (x2)2 − |x|2 + 1)

(|x|2 + 1)3
.

By setting x1 = x2 = x3 = 0 in (5.12) and (5.23), we obtain

∥

∥

∥

∥

∥

∥

∥

X0

X1

X2

X3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

0
0
0
0

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y01

Y02

Y03

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0
0

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

Y12

Y13

Y23

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

0
0

−4 R2

∥

∥

∥

∥

∥

∥

. (5.24)

The quantities (5.24) are initial data for the equations (3.20) and (3.22).

6. Analysis of the compatibility conditions.

Six linearly independent Killing vector fields (5.1), (5.5), (5.9), (5.13), (5.17),
and (5.21) do always exist regardless to the function (1.4). However, all of them
are space-like vector fields since X0 = 0 for them. It is known that time-like Killing
vector fields are more important for quantum field theories. For this reason we look
for the solutions of the equations (4.8) and (4.9) with

X0 6= 0. (6.1)

Under the assumption (6.1) the second equation in (4.8) produces two mutually
exclusive options for the function R = R(x0) in (1.4):

R′ = 0 or 2 (R′)2 − R′′ R + R2 = 0. (6.2)

We study these two options in (6.2) as two different cases.
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The first case: R′ = 0. In this case R = const and R > 0, i. e. R is a positive
constant. Applying the condition R′ = 0 to (4.8), we find that both of the equations
(4.8) are fulfilled identically in this case. As for (4.9), here we have

2 (R′)2 − R′′ R + R2 = R2 6= 0. (6.3)

Due to (6.3) and due to R′ = 0 from (4.9) we derive

Y01 = 0, Y02 = 0, Y03 = 0. (6.4)

Now let’s write the differential equations (3.22), taking into account (6.4). For the
function X0 we get the following equations:

∂X0

∂x0
= 0,

∂X0

∂x1
= 0,

∂X0

∂x2
= 0,

∂X0

∂x3
= 0. (6.5)

The equations (6.5) mean that X0 is a constant function:

X0 = const .

Moreover, taking into account (6.4), from (3.20) and (3.22) we derive:

∂X1

∂x0
= 0,

∂X2

∂x0
= 0,

∂X3

∂x0
= 0, (6.6)

∂Y12

∂x0
= 0,

∂Y23

∂x0
= 0,

∂Y13

∂x0
= 0. (6.7)

The equations (6.6) and (6.7) mean that the functions X1, X2, X3, Y12, Y13, Y23

actually do not depend on the variable x0. As appears, other equations in (3.20) and
(3.22) in the case of R′ = 0 do not contain X0 and form complete system of Pfaff
equations for six functions X1, X2, X3, Y12, Y13, Y23 with respect to three variables
x1, x2, x3. These equations have at most six linearly independent solutions. These
solutions are exhausted by six Killing vector field considered in section 5.

Theorem 6.1. In the case of R′ = 0 the spherical universe M = R × S3 with the

metric (1.2) admits exactly one linearly independent time-like Killing vector field

X =
∂

∂x0
(6.8)

in addition to six space-like Killing vector fields (5.1), (5.5), (5.9), (5.13), (5.17),
(5.21) produced by the rotations of the sphere S3.

The vector field (6.8) is orthogonal to the sphere S3 in M . It commutes with
other six Killing vector fields, which are tangent to S3.

The second case. In contrast to (6.3), in this case we have the following
equality for the function R = R(x0) in (1.4):

2 (R′)2 − R′′ R + R2 = 0. (6.9)
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Due to the equality (6.9) the compatibility conditions (4.9) and the first compati-
bility equation (4.8) are fulfilled identically. Moreover, we have

−(2 (R′)2 − R′′ R + R2)′ + 2 R′ (2 (R′)2 − R′′ R + R2) =

= 4 (R′)3 − 5 R′′ R′ R + R′′′ R2.
(6.10)

Due to (6.10) the first compatibility equation in (4.8) is also fulfilled identically.
Thus, the equation (6.9) is the only compatibility condition derived from (3.27) in
the second case.

Note that the equation (6.9) can be integrated up to the first order differential
equation. Indeed, since R 6= 0, it can be written as follows:

(

R′

R2

)

′

=
1

R
(6.11)

Let’s multiply both sides of (6.11) by the fraction

R′

R2
(6.12)

As a result we get the equation with the pure derivatives in both sides:

(

1

2

(

R′

R2

)

2
)

′

=
R′

R3
=

(

−
1

2

1

R2

)

′

. (6.13)

Integrating the equality (6.13), we derive

(R′)2 = C R4 − R2, (6.14)

where C is a constant of integration. Note that R′ can vanish at some points, it is
not identically zero in this case. The same is true for the fraction (6.12). Therefore
the equation (6.14) is equivalent to the initial equation (6.9) at all point except for
those, where R′ = 0.

It is clear that C in (6.14) is a positive constant. Let’s denote C = 1/a2. Then
R is a function with the values ranging in the interval

R ∈ [a, +∞).

The equation (6.14) itself can be written as follows

((

1

R

)

′
)

2

=
1

a2
−

1

R2
. (6.15)

Let’s denote u = 1/R for a while. Then we transform (6.15) to

(u′)2 = 1/a2 − u2 (6.16)

The equation (6.16) can be integrated. Its general solution looks like

u(x0) =
cos(x0 + b)

a
, (6.17)
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where b is a constant of integration. Without loss of generality we can take b = 0.
Then from (6.17) we derive the following formula

R(x0) =
a

cos(x0)
. (6.18)

Having defined the function (1.4) by means of the formula (6.18), now let’s define
the time variable t by means of the differential equation (1.5):

dx0

cos(x0)
=

c dt

a
. (6.19)

Integrating both sides of the equality (6.19), we obtain:

ln

(

1 + sin(x0)

cos(x0)

)

=
c t

a
. (6.20)

Transforming (6.20), we pass from logarithms to exponentials. As a result we get:

1 + sin(x0)

cos(x0)
= e

c t

a . (6.21)

Now we square both sides of the equality (6.21). This yields

1 + 2 sin(x0) + sin2(x0)

cos2(x0)
=

2 + 2 sin(x0) − cos2(x0)

cos2(x0)
= e

2 c t

a . (6.22)

The equality (6.22) can be transformed to the following one:

1 + sin(x0) =
1 + e

2 c t

a

2
cos2(x0). (6.23)

Note that the left hand side of (6.23) coincides with the numerator of the fraction
in the left hand side of (6.21). Substituting (6.23) back into (6.21), we get

cos(x0) =
2 e

c t

a

1 + e
2 c t

a

=
1

cosh
(

c t
a

)

. (6.24)

Substituting (6.24) into (6.18) we find the dependence of R on the time variable t:

R(t) = a cosh
(

c t
a

)

.

Moreover, substituting (6.24) into (6.21), we derive the following formula:

sin(x0) =

sinh
(

c t
a

)

cosh
(

c t
a

)

= tanh
(

c t
a

)

. (6.25)

Now, relying on the above calculations, we introduce the modified stereographic
coordinates especially for this particular case:

u0 =
c t

a
, u1 = x1, u2 = x2, u3 = x3. (6.26)



ON KILLING VECTOR FIELDS . . . 17

The metric (1.2) in these coordinates u0, u1, u2, u3 is written as follows:

ds2 = a2 (du0)2 − 4 a2 cosh2(u0)
(du1)2 + (du2)2 + (du3)2

(|u|2 + 1)
2

, (6.27)

where |u|2 = (u1)2 + (u2)2 + (u3)2. Let’s consider the following four functions of
the modified stereographic coordinates u0, u1, u2, u3:

z1 = A cosh(u0)
2 u1

|u| + 1
, z2 = A cosh(u0)

2 u2

|u| + 1
,

(6.28)

z3 = A cosh(u0)
2 u3

|u| + 1
, z4 = A cosh(u0)

|u| − 1

|u| + 1
.

As it was shown in [4], the functions (6.28) determine an embedding of the sphere
S3 into the four-dimensional Euclidean space R

4. Let’s complement the functions
(6.28) with one additional function

z0 = A sinh(u0). (6.29)

Then the functions (6.28) and (6.29) taken together determine an embedding of
our universe M = R×S3 into the five-dimensional space R

5. If we equip this space
with the sign-indefinite metric

ds2 = (dz0)2 − (dz1)2 − (dz2)2 − (dz3)2 − (dz4)2, (6.30)

then we find that the metric (6.30) induces the metric (6.27) in M under the
embedding given by the functions (6.28) and (6.29).

Calculating the curvature tensor for the metric (6.27), we find that our universe
M = R × S3 in this case is a manifold of constant negative sectional curvature

K = −
1

a2
.

It is known that any four-dimensional constant curvature manifold has exactly ten
linear independent Killing vector fields (compare this fact with the theorem 3.1).
Six of them are given by the formulas (5.1), (5.5), (5.9), (5.13), (5.17), (5.21).
These fields are associated with meridional and equatorial rotations of the sphere
S3. Other four fields are determined by the hyperbolic rotations of M itself.

Hyperbolic rotation in the plane z1Oz0. This rotation induces the Killing
vector field X in M expressed by the formula

X =
2 (u1)

|u|2 + 1

∂

∂u0
+

|u|2 − 2 (u1)2 + 1

2

sinh(u0)

cosh(u0)

∂

∂u1
−

− (u1)(u2)
sinh(u0)

cosh(u0)

∂

∂u2
− (u1)(u3)

sinh(u0)

cosh(u0)

∂

∂u3
.

(6.31)

Hyperbolic rotation in the plane z2Oz0. This rotation induces a Killing vector
field in M very similar to the previous one. The Killing vector field X for this case
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is expressed by the following formula:

X =
2 (u2)

|u|2 + 1

∂

∂u0
− (u2)(u1)

sinh(u0)

cosh(u0)

∂

∂u1
+

+
|u|2 − 2 (u2)2 + 1

2

sinh(u0)

cosh(u0)

∂

∂u2
− (u2)(u3)

sinh(u0)

cosh(u0)

∂

∂u3
.

(6.32)

Hyperbolic rotation in the plane z3Oz0. This rotation induces the Killing
vector field X in M expressed by the formula

X =
2 (u3)

|u|2 + 1

∂

∂u0
− (u3)(u1)

sinh(u0)

cosh(u0)

∂

∂u1
−

− (u3)(u2)
sinh(u0)

cosh(u0)

∂

∂u2
+

|u|2 − 2 (u3)2 + 1

2

sinh(u0)

cosh(u0)

∂

∂u3
.

(6.33)

Hyperbolic rotation in the plane z4Oz0. This rotation produces the Killing
vector field X in M expressed by the formula

X =
|u|2 − 1

|u|2 + 1

∂

∂u0
+ (u1)

sinh(u0)

cosh(u0)

∂

∂u1
+

+ (u2)
sinh(u0)

cosh(u0)

∂

∂u2
+ (u3)

sinh(u0)

cosh(u0)

∂

∂u3
.

(6.34)

Using (6.26), (6.20), (6.24), and (6.25), one can easily transform the above four
vector fields to the initial North Pole stereographic coordinates x0, x1, x2, x3. Note
that none of the vector fields (6.31), (6.32), (6.33), (6.34) is purely time-like. They
are build by time-like vectors at some points of M and by space-like vectors at some
other points.

Theorem 6.2. In the case of 2 (R′)2 − R′′ R + R2 = 0 the spherical universe

M = R × S3 with the metric (1.2) admits four linearly independent Killing vector

fields (6.31), (6.32), (6.33), (6.34) in addition to six space-like Killing vector fields

(5.1), (5.5), (5.9), (5.13), (5.17), (5.21). Neither of these ten Killing vector fields,

nor any linear combination of them with constant coefficients is a purely time-like

vector field in M .

7. Conclusions.

The main result of this paper is that in general case a homogeneous and isotropic
closed universe M = R × S3 has no time-like Killing vector fields at all, i. e. it is
non-stationary in the sense of [1] and [2]. For this reason it is a good model for
to study various quantization procedures for the matter fields in the presence of a
non-stationary gravitation field as a background. The theorems 6.1 and 6.2 specify
two exceptional cases. In the first of them the universe M = R × S3 is stationary
in whole, while in the second case is is piecewise stationary, i. e. it is broken into
stationary and non-stationary fragments.
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