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A NOTE ON PAIRS OF METRICS

IN A TWO-DIMENSIONAL LINEAR VECTOR SPACE.

R. A. Sharipov

Abstract. Pairs of metrics in a two-dimensional linear vector space are considered,
one of which is a Minkowski type metric. Their simultaneous diagonalizability is
studied and canonical presentations for them are suggested.

1. Introduction.

Let V be a two-dimensional linear vector space equipped with two metrics g and
ǧ. It is well known (see [1]) that if g is positive, then these two metrics can be
diagonalized simultaneously in some basis. Here we consider a different case where
g is a metric of the signature (+,−). A two-dimensional space with such a metric
is often used as a two-dimensional model of the four-dimensional Minkowski space.
For this reason we call g a Minkowski type metric.

2. Lorentz transformations and diagonalizability.

Each single metric can be diagonalized. This fact means that there is some basis
e0, e1 in V such that the metric g is given by the diagonal matrix gij with the
numbers 1 and −1 on its diagonal:

gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

ǧ00 ǧ01

ǧ01 ǧ11

∥

∥

∥

∥

. (2.1)

The second metric is not necessarily diagonal in this basis. In order to diagonalize
it we perform the following Lorentz transformation of the basis e0, e1:

ẽ0 = cosh(φ) e0 + sinh(φ) e1,

ẽ1 = sinh(φ) e0 + cosh(φ) e1.
(2.2)

Under the basis transformation (2.2) the matrices (2.1) are transformed according
to the standard tensorial rule:

g̃ij =

1
∑

p=0

1
∑

q=0

S
p

i S
q

j gpq, ˇ̃gij =

1
∑

p=0

1
∑

q=0

S
p

i S
q

j ǧpq, (2.3)
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where the components of the transition matrix S are determined by (2.2):

S =

∥

∥

∥

∥

∥

cosh(φ) sinh(φ)

sinh(φ) cosh(φ)

∥

∥

∥

∥

∥

. (2.4)

Substituting (2.4) into (2.3), one easily finds that the first matrix (2.1) is invariant
under the Lorentz transformation (2.2), i. e. g̃ij = gij . For the non-diagonal matrix
element of the second metric ǧ in the new basis ẽ0, ẽ1 we have

ˇ̃g01 =
ǧ00 + ǧ11

2
sinh(2 φ) + ǧ01 cosh(2 φ). (2.5)

The metric ǧ is diagonalized simultaneously with the metric g if the equation
ˇ̃g01 = 0 can be solved with respect to φ. Due to the above formula (2.5) the
equation ˇ̃g01 = 0 is equivalent to

(ǧ00 + ǧ11) tanh(2 φ) = −2 ǧ01. (2.6)

Looking at (2.6), we define the following four mutually exclusive cases:

The first case ǧ00 + ǧ11 = 0 and ǧ01 = 0

The second case ǧ00 + ǧ11 6= 0 and ǧ01 = 0

The third case ǧ00 + ǧ11 = 0 and ǧ01 6= 0

The fourth case ǧ00 + ǧ11 6= 0 and ǧ01 6= 0

(2.7)

In the first case ǧ01 = 0. Therefore the second metric ǧ is diagonal in the initial
basis e0, e1. Moreover, ǧ11 = −ǧ00. If we denote ǧ00 = a, then (2.1) is written as

gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

a 0

0 −a

∥

∥

∥

∥

. (2.8)

As we see in (2.8), the metrics g and ǧ in the first case do coincide up to the
numeric factor a, i. e. ǧ = ag. They are always diagonalized simultaneously.

In the second case ǧ01 = 0 too. Both metrics g and ǧ are diagonal simultane-
ously in the initial basis e0, e1. If we denote ǧ00 = a and ǧ11 = b, we get

gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

a 0

0 b

∥

∥

∥

∥

. (2.9)

The equation (2.6) in this case is solvable and its solution is φ = 0. This means
that (2.2) is the identical transformation where ẽ0 = e0 and ẽ1 = e1.

In the third case ǧ01 6= 0, i. e. the second metric ǧ is not diagonal, but we have
the relationship ǧ11 = −ǧ00. If we denote ǧ00 = a and ǧ01 = b, then we get

gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

a b

b −a

∥

∥

∥

∥

. (2.10)



A NOTE ON PAIRS OF METRICS . . . 3

The equation (2.6) in this case is not solvable, i. e. the metrics g and ǧ cannot be
diagonalized simultaneously. Therefore we postulate (2.10) to be another canonical
presentation for the metrics g and ǧ.

The fourth case in the table (2.7) is subdivided into three subcases

Case 4, subcase 1 |2 ǧ01| < |ǧ00 + ǧ11|
Case 4, subcase 2 |2 ǧ01| > |ǧ00 + ǧ11|
Case 4, subcase 3 |2 ǧ01| = |ǧ00 + ǧ11|

(2.11)

In the first subcase of the case 4 the equation (2.6) is solvable. Indeed, since
ǧ00 + ǧ11 6= 0, we can write it as follows:

tanh(2 φ) = − 2 ǧ01

ǧ00 + ǧ11

. (2.12)

The function tanh(2 φ) is a growing smooth function on the real axis R, its values
range from −1 as φ → −∞ to +1 as φ → +∞. For this reason the equation (2.12)
has a unique solution φ = φ0. Substituting it into (2.2), we find a new basis ẽ0, ẽ1

where both metrics g and ǧ are diagonal. Their matrices take their canonical forms
(2.9) in this new basis.

In the second subcase of the case 4 the equation (2.6) is not solvable. Therefore
we take the sum ˇ̃g00 + ˇ̃g11. The vanishing condition for this sum leads to the
following equation for the parameter φ:

tanh(2 φ) = − ǧ00 + ǧ11

2 ǧ01

. (2.13)

Looking at the second raw in the table (2.11), we see that the second subcase of
the case 4 is that very case where the equation (2.13) is solvable and has a unique
solution φ = φ0 Substituting this solution into (2.2), we find a new basis ẽ0, ẽ1

where the matrices of the metrics g and ǧ take their canonical forms (2.10).
The third subcase of the case 4 is a special case. It subdivides into two subcases

of the next level. They are listed in the following table:

Case 4, subcase 3A 2 ǧ01 = ǧ00 + ǧ11

Case 4, subcase 3B −2 ǧ01 = ǧ00 + ǧ11

(2.14)

These two subcases (2.14) are studied in the next section.

3. Associated operators.

The first metric g is a Minkowski type metric with the signature (+,−). It is
non-degenerate. For this reason we can define the associated operator F̌ for the
second metric with respect to the first one. It is introduced by the formula

g(F̌(X),Y) = ǧ(X,Y). (3.1)
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Here X and Y are two arbitrary vectors of the space V . Due to the symmetry of
the quadratic forms g and ǧ we can extend (3.1) as follows:

g(F̌(X),Y) = ǧ(X,Y) = g(X, F̌(Y)), (3.2)

The formulas (3.2) mean that F̌ is a symmetric operator with respect to the metric
g. In the coordinate form the associated operator F̌ is represented by a matrix:

F̌ i
j =

∥

∥

∥

∥

∥

F̌ 0

0
F̌ 0

1

F̌ 1

0
F̌ 1

1

∥

∥

∥

∥

∥

. (3.3)

The components of the matrix (3.3) are given by the formula

F̌ i
j =

3
∑

s=0

gis ǧsj.

Here gis are the components of the matrix inverse to the matrix of the first metric
g. Applying this formula to (2.1), for F̌ in the basis e0, e1 we get

F̌ i
j =

∥

∥

∥

∥

ǧ00 ǧ01

−ǧ01 −ǧ11

∥

∥

∥

∥

. (3.4)

Using (3.4), we can calculate the invariants for the pair of metrics g and ǧ:

tr F̌ = ǧ00 − ǧ11, det F̌ = (ǧ01)
2 − ǧ00 ǧ11. (3.5)

Relying on (3.5), we perform the following calculations:

(ǧ00 + ǧ11)
2 − 4 (ǧ01)

2 = (ǧ00 − ǧ11)
2 +

+ 4 ǧ00 ǧ11 − 4 (ǧ01)
2 = (tr F̌)2 − 4 det F̌.

(3.6)

Due to the formula (3.6) we can write the conditions in the table (2.11) in the
invariant coordinate-free form:

Case 4, subcase 1 (tr F̌)2 > 4 det F̌

Case 4, subcase 2 (tr F̌)2 < 4 det F̌

Case 4, subcase 3 (tr F̌)2 = 4 det F̌

(3.7)

In the subcase 1 of the table (3.7) the associated operator F̌ has two real eigen-
values λ0 6= λ1. Let v0 and v1 be the eigenvectors of the operator F̌ corresponding
to the eigenvalues λ0 and λ1 respectively. Since λ0 6= λ1, they are orthogonal to
each other with respect to both metrics g and ǧ:

g(v0,v1) = 0, ǧ(v0,v1) = 0. (3.8)
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The proof of this fact is derived from (3.2). Indeed, we have

λ0 g(v0,v1) = g(F̌(v0),v1) = ǧ(v0,v1) = g(v0, F̌(v1)) = λ1 g(v0,v1). (3.9)

From (3.9) we derive (λ1 −λ0) g(v0,v1) = 0, which yields g(v0,v1) = 0. Substitut-
ing this equality back to the formulas (3.9), we get ǧ(v0,v1). Thus, both equalities
(3.8) are proved.

If we choose the vectors v0, v1 for a basis, then the equalities (3.9) mean that
both metrics g and ǧ are diagonal in this basis. The signature of the metric g

is (+,−). For this reason g(v0,v0) and g(v1,v1) are two nonzero numbers of
opposite signs. Without loss of generality we can assume that g(v0,v0) is positive
and g(v1,v1) is negative. We can normalize the eigenvectors v0 and v1 so that
g(v0,v0) = 1 and g(v1,v1) = −1. Then v0, v1 is that very basis, where the
metrics g and ǧ take their canonical forms (2.9) with a = λ0 and b = −λ1.

Theorem 3.1. If (tr F̌)2 > 4 det F̌, then the metrics g and ǧ are given by the

matrices (2.9) with a+ b 6= 0 in a basis composed by eigenvectors of the operator F̌.

In the subcase 2 of the table (3.7) the associated operator F̌ has two complex

eigenvalues conjugate to each other: λ1 = λ0. More exactly, λ0 6= λ1 are the
eigenvalues of the complexified operator F̌ in the complexification CV = C ⊗ V

of the vector space V . The complex space CV is naturally equipped with the
involution of complex conjugation:

τ : CV → CV. (3.10)

The space V is embedded into CV as a R-linear subspace invariant under the
involution (3.10). Since F̌ is a complexification of an operator acting in V , it
commutes with τ . Therefore, if v0 is an eigenvector corresponding to the eigenvalue
λ0, then v1 = τ(v0) is an eigenvector corresponding to the eigenvalue λ1 = λ0.
Let’s define the following two vectors:

e0 =
v0 + v1√

2
e1 =

v0 − v1√
2 i

. (3.11)

The vectors (3.11) are invariant under the action of the involution τ . Hence they
belong to V . These vectors are nonzero and linearly independent. They form a
basis in V . Applying F̌ to (3.11), we find

F̌(e0) =
λ0 v0 + λ0 v1√

2
= Re(λ0) e0 − Im(λ0) e1,

F̌(e1) =
λ0 v0 − λ0 v1√

2 i
= Im(λ0) e0 + Re(λ0) e1.

(3.12)

Note that the vectors v0 and v1 are orthogonal to each other with respect to both
metrics g and ǧ, i. e. the formulas (3.8) are valid. The arguments for that here are
the same as in (3.9). Due to (3.8) the metric g is diagonal in the basis v0, v1. It
is a non-degenerate metric. Hence, g(v0,v0) and g(v1,v1) are nonzero. Due to the
complexity of the space CV the vectors v0 and v1 can be normalized to the unity:

g(v0,v0) = 1, g(v1,v1) = 1. (3.13)
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From (3.11), (3.8) and (3.13) we easily derive

g(e0, e0) = 1, g(e0, e1) = 0, g(e1, e1) = −1. (3.14)

Let’s denote Re(λ0) = a and Im(λ0) = b. Then from (3.12) and (3.14), using the
formula (3.2), we derive that the metrics g and ǧ take their canonical forms (2.10).

Theorem 3.2. If (tr F̌)2 < 4 det F̌, then the metrics g and ǧ are given by the

matrices (2.10) in a basis produced from eigenvectors of the complexified associated

operator F̌ according to the formulas (3.11).

Now let’s proceed to the subcase 3 of the table (3.7). In this case the associated
operator F̌ has one real eigenvalue λ0 of the multiplicity 2. Assume that the metrics
g and ǧ are brought to the form (2.1) in some basis e0, e1. Then this subcase 3
is subdivided into two subcases 3A and 3B of the next level (see the table (2.14)).
Actually, the subcase 3B is equivalent to the subcase 3A. Indeed, assume that the
condition −2 ǧ01 = ǧ00 + ǧ11 is fulfilled in the basis e0, e1. Then we perform the
following basis transformation:

ẽ0 = e0, ẽ1 = −e1. (3.15)

The transformation (3.15) is characterized by the diagonal transition matrix

S =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

. (3.16)

Substituting (3.16) into (2.3), we find that g̃ij = gij , i. e. the matrix of the metric
g is invariant under the basis transformation (3.15), while for the matrices of the
second metric we have the following relationships:

ˇ̃g00 = g00, ˇ̃g01 = −g01, ˇ̃g11 = g11. (3.17)

Due to the formulas (3.17), from −2 ǧ01 = ǧ00 + ǧ11 we derive 2 ˇ̃g01 = ˇ̃g00 + ˇ̃g11.
Thus, the subcase 3B occurring in some basis e0, e1 can be transformed to the
subcase 3A in some other basis.

Continuing the study of the subcase 3 in (3.7), we restrict ourselves to the subcase
3A. Using the equality 2 ǧ01 = ǧ00 + ǧ11 we express ǧ01 through ǧ00 and ǧ11:

ǧ01 =
ǧ00 + ǧ11

2
. (3.18)

Then we substitute the expression (3.18) into the matrix (3.4) and calculate the
eigenvalue of the associated operator F̌:

λ0 =
ǧ00 − ǧ11

2
. (3.19)

As we mentioned above, the operator F̌ in this case has exactly one eigenvalue (3.19)
of the multiplicity 2. Let A = F̌ − λ0 I, where F̌ is the matrix of the operator F̌

and I is the unit matrix. Then, using (3.19) for λ0, we obtain

Ai
j =

ǧ00 + ǧ11

2

∥

∥

∥

∥

1 1

−1 −1

∥

∥

∥

∥

. (3.20)
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Now, relying on (3.20) we define the following quantity:

σ = sign(ǧ00 + ǧ11) =











+1 if ǧ00 + ǧ11 > 0;

0 if ǧ00 + ǧ11 = 0;

−1 if ǧ00 + ǧ11 < 0.

(3.21)

We subdivide the subcase 3 in (3.7) into three subcases of the next level regarding
the value of σ in (3.21). They are listed in the table

Case 4, subcase 3(1) σ = 1

Case 4, subcase 3(2) σ = −1

Case 4, subcase 3(3) σ = 0

(3.22)

The subcase 3(3) is the most simple in the table (3.22). In this case the matrix
(3.20) is equal to zero, i. e. g00 + g11 = 0. Then we denote

ǧ00 = −ǧ11 = a. (3.23)

Substituting (3.23) into (3.18) and (3.19), we find that

λ0 = a, ǧ01 = 0. (3.24)

Substituting (3.23) and (3.24) back into (2.1), we see that the subcase 3(3) in the
table (3.22) is equivalent to the first subcase in the table (2.7).

Theorem 3.3. If (tr F̌)2 = 4 det F̌ and σ = 0, then the metrics g and ǧ differ only

by a scalar factor. They can be brought to the canonical form (2.8) in some basis.

Let’s proceed to the subcase 3(1) in the table (3.22). In this case ǧ00 + ǧ11 > 0.
Therefore we denote ǧ00 + ǧ11 = 2 β2 and λ0 = a. Then (3.18) and (3.19) yield

ǧ00 = β2 + a, ǧ01 = β2, ǧ11 = β2 − a. (3.25)

Substituting (3.25) into (2.1), we find

gij =

∥

∥

∥

∥

1 0

0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

∥

β2 + a β2

β2 β2 − a

∥

∥

∥

∥

∥

. (3.26)

The matrices (3.26) present the metrics g and ǧ in some basis e0, e1. Now we
perform the following basis transformation:

ẽ1 =
1

2 β
e0 +

1

2 β
e1, ẽ0 = β e0 − β e1. (3.27)

Upon performing the basis transformation (3.27) we find that the metrics g and ǧ

are presented by the matrices

gij =

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

1 a

a 0

∥

∥

∥

∥

(3.28)
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in the new basis. The presentation (3.28) is a canonical presentation for the metric
pair g, ǧ in the subcase 3(1).

Theorem 3.4. If (tr F̌)2 = 4 det F̌ and σ = 1, then the metrics g and ǧ are

presented by the matrices (3.28) in some basis.

The subcase 3(2) is similar to the subcase 3(1). In this case ǧ00 + ǧ11 < 0
Therefore we denote ǧ00 + ǧ11 = −2 β2 and λ0 = a. Then (3.18) and (3.19) yield

ǧ00 = a − β2, ǧ01 = −β2, ǧ11 = −a− β2. (3.29)

Due to (3.29) the formulas (2.1) specialize to the following ones:

gij =

∥

∥

∥

∥

1 0

0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

∥

a − β2 −β2

−β2 −a − β2

∥

∥

∥

∥

∥

. (3.30)

Now we perform the following basis transformation:

ẽ0 = β e0 − β e1, ẽ1 =
1

2 β
e0 +

1

2 β
e1. (3.31)

By means of (3.31) we bring the matrices (3.30) to their canonical forms:

gij =

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

0 a

a −1

∥

∥

∥

∥

. (3.32)

Theorem 3.5. If (tr F̌)2 = 4 det F̌ and σ = −1, then the metrics g and ǧ are

presented by the matrices (3.32) in some basis.

4. Classification.

The cases and subcases considered in the previous two sections are excessive.
Some of them are equivalent to others and some of them are particular cases of
others. The actual classification of metric pairs, one of which is a Minkowski type
metric, is given by the theorems 3.1, 3.2, 3.3, 3.4, and 3.5. We gather the results
of these theorems into the following table:

Condition Canonical presentation

(tr F̌)2 > 4 det F̌ gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

a 0

0 b

∥

∥

∥

∥

with b 6= −a

(tr F̌)2 < 4 det F̌ gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

a b

b −a

∥

∥

∥

∥

with b 6= 0

(tr F̌)2 = 4 det F̌
and σ = 0

gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

a 0

0 −a

∥

∥

∥

∥

(tr F̌)2 = 4 det F̌
and σ = 1

gij =

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

1 a

a 0

∥

∥

∥

∥

(tr F̌)2 = 4 det F̌
and σ = −1

gij =

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, ǧij =

∥

∥

∥

∥

0 a

a −1

∥

∥

∥

∥

(4.1)
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The quantity σ in the table (4.1) is an invariant of a pair of metrics. It is very
important to note that this invariant cannot be expressed through the invariants of
the associated operator ( tr F̌ and det F̌ ). The formula (3.21) defines this invariant
in a special basis, where the first metric g is diagonalized:

gij =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

.

However, there must be a formula or an algorithm for calculating the invariant σ

in an arbitrary basis without diagonalizing the metric g.

5. Dedicatory.

This paper is dedicated to my uncle Amir Minivalievich Nagaev.
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