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ON OPERATOR FIELDS

IN THE BUNDLE OF DIRAC SPINORS.

R. A. Sharipov

Abstract. Operator fields in the bundle of Dirac spinors and their conversion to
spatial fields are considered. Some commutator equations are studied with the use
of the conversion technique.

1. Introduction.

The bundle of Dirac spinors is used for describing particles with half-integer spin
in general relativity and in quantum field theory. It is a special four-dimensional
complex vector-bundle over the space-time manifold M . Let’s remind that the
space-time manifold M itself is a four-dimensional real manifold equipped with a
Minkowski type metric g of the signature (+,−,−,−). Apart from g, the space-
time manifold M is equipped with two other geometric structures — the orientation
and the polarization. The orientation distinguishes right quadruples of tangent
vectors from left ones, while the polarization distinguishes future and past half
light cones in tangent spaces at each point of M .

The bundle of Dirac spinors is denoted DM . It is equipped with four basic
spin-tensorial fields in addition to g. They are presented in the following table.

Symbol Name Spin-tensorial
type

d Skew-symmetric metric tensor (0, 2|0, 0|0, 0)

H Chirality operator (1, 1|0, 0|0, 0)

D Dirac form (0, 1|0, 1|0, 0)

γ Dirac γ-field (1, 1|0, 0|1, 0)

The metric tensor g itself is interpreted as a spin-tensorial field of the spin-tensorial
type (0, 0|0, 0|0, 2).

In this paper, saying an operator field, we assume a spin-tensorial field F of the
spin-tensorial type (1, 1|0, 0|0, 0). In the coordinate form it is presented by a matrix
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2 R. A. SHARIPOV

F a
b , where a and b are two spinor indices. Each operator field F in the bundle of

Dirac spinors has a unique presentation of the following form:

F a
b = u δa

b + v Ha
b +

3
∑

k=0

γak
b uk +

+

3
∑

k=0

4
∑

c=1

Ha
c γ

ck
b vk +

3
∑

p=0

3
∑

q=0

4
∑

c=1

γap
c γ

cq
b wpq .

(1.1)

Here u and v are two scalar fields, uk and vk are the components of two covectorial
fields u and v, and wpq are the components of a skew-symmetric tensorial field w.
Through Ha

b in (1.1) we denote the components of the chirality operator H, while
γak

b are the components of the Dirac γ-filed γ.
The formula (1.1) is a conversion formula associating the spin-tensorial operator

field F with the purely tensorial fields u, v, u, v, w. The presentation (1.1) is
well-known (see § 28 in [1]). The main goal of this paper is to study some special
commutator equations for operator fields in terms of their associated tensorial fields.

2. Frames and coordinate presentations
of the basic fields.

Definition 2.1. A spatial frame is a quadruple of vector fields Υ0, Υ1, Υ2, Υ3

defined in some open domain of the space-time manifoldM and linearly independent
at each point of their domain.

Definition 2.2. A spatial frame Υ0, Υ1, Υ2, Υ3 is called a right frame if at each
point of its domain its vectors Υ0, Υ1, Υ2, Υ3 form a right quadruple in the sense
of the orientation in M .

Definition 2.3. A spatial frame Υ0, Υ1, Υ2, Υ3 is called an orthonormal frame

if the metric tensor g is presented by the standard Minkowski matrix in this frame:

gij = gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (2.1)

In physical literature the matrix (2.1) is often denoted by ηij . However, this is not
a good tradition. I prefer to use the symbol g for the components of the metric
tensor irrespective to the choice of an orthonormal or a non-orthonormal frame.

Definition 2.4. An orthonormal spatial frame Υ0, Υ1, Υ2, Υ3 is called positively

polarized if its first vector Υ0 is a time-like vector directed to the future in the sense
of the polarization in M .

A positively polarized right orthonormal frame Υ0, Υ1, Υ2, Υ3 is a typical
choice when dealing with spinors. Note, however, that in general case of a non-flat
space-time M such a frame is not holonomic, i. e. its vector fields do not commute:

[Υi,Υj ] =

3
∑

k=0

c k
ij Υk. (2.2)
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The coefficients c k
ij in (2.2) are called the commutation coefficients of the frame

Υ0, Υ1, Υ2, Υ3. This frame is called holonomic if all of its commutation coeffi-
cients are identically zero. Otherwise, it is called a non-holonomic frame.

It is known that the metric g induces the 4-form ω in M which is called the
volume form or the volume tensor. This differential form is used for integration
over M . In the coordinate form the volume tensor ω is given by the formula

ωijkm = ±
√

− det(gij) εijkm, (2.3)

where ε is the Levi-Civita symbol:

εijkm = εijkm =























1 if (ijkm) is an even permutation
of the numbers 0, 1, 2, 3;

−1 if (ijkm) is an odd permutation
of the numbers 0, 1, 2, 3;

0 in all other cases.

(2.4)

Typically ω is treated as a pseudotensor. However, we assumeM to be an orientable
manifold with a fixed orientation. In this case we can fix the choice of sign in (2.3)
by setting plus for right frames and setting minus for left frames. Therefore, we
treat ω as a tensor.

The dual volume tensor is denoted by the same symbol ω. Its components are
produced from ωijkm by means of the standard index raising procedure:

ωijkm =

3
∑

p=0

3
∑

q=0

3
∑

r=0

3
∑

s=0

ωpqrs g
pi gqj grk gsm. (2.5)

Applying the formula (2.3) to (2.5), we derive the formula

ωijkm = ∓
√

− det(gij) εijkm, (2.6)

where ε again is the Levi-Civita symbol (2.4). In the case of a right orthonormal
frame the formulas (2.3) and (2.6) are reduced to

ωijkm = εijkm, ωijkm = −εijkm. (2.7)

Definition 2.5. A spinor frame in the bundle of Dirac spinors DM is a quadruple
Ψ1, Ψ2, Ψ3, Ψ4 of smooth sections of this bundle over some open domain of M
linearly independent at each point of this domain.

Definition 2.6. A spinor frame Ψ1, Ψ2, Ψ3, Ψ4 is called an orthonormal frame

the spinor metric d is presented by the following matrices in this frame:

dij =

∥

∥

∥

∥

∥

∥

∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥

∥

∥

∥

∥

∥

∥

, dij =

∥

∥

∥

∥

∥

∥

∥

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

∥

∥

∥

∥

∥

∥

∥

. (2.8)

The matrices (2.8) are inverse to each other. They present the spinor metric d

and its dual metric in an orthonormal spinor frame. Irrespective to the choice of
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a spinor frame (orthonormal or non-orthonormal) the components of the spinor
metric d are used for lowering spinor indices. The components of the dual spinor
metric are used for raising spinor indices.

Definition 2.7. A spinor frame Ψ1, Ψ2, Ψ3, Ψ4 of the bundle DM is called a
chiral frame if the chirality operator H given by the following matrix in this frame:

H i
j =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (2.9)

Definition 2.8. A spinor frame Ψ1, Ψ2, Ψ3, Ψ4 of the Dirac bundle DM is called
a self-adjoint frame if the Hermitian metric tensor D (the Dirac form) is represented
by the following matrix in this frame:

Dij̄ =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

. (2.10)

Definition 2.9. Canonically orthonormal chiral frames in DM are those which
are orthonormal, chiral, and self-adjoint simultaneously .

Canonically orthonormal chiral frames in DM do exist. Moreover, each such
frame is canonically associated with some positively polarized right orthonormal
frame in TM . Apart from canonically orthonormal chiral frames, there are three
other special types of frames in DM . All of these frame types and their associated
frame types in TM are listed in the following diagram.

Canonically orthonormal

chiral frames
→

Positively polarized

right orthonormal frames

P -reverse
anti-chiral frames

→
Positively polarized

left orthonormal frames

T -reverse
anti-chiral frames

→
Negatively polarized

left orthonormal frames

PT -reverse
chiral frames

→
Negatively polarized

right orthonormal frames

(2.11)

More details concerning the diagram (2.11) can be found in [2]. In this paper
we shall use canonically orthonormal chiral frames in DM and their associated
positively polarized right orthonormal frames in TM only. They are sufficient for
our purposes.

The bundle of Dirac spinors DM is a complex vector bundle. Therefore it is
equipped with the involution of complex conjugation τ that acts upon spin-tensorial
fields and changes their spin tensorial type as follows:

τ
−−−−→(α, β|ν, γ|r, s) (ν, γ|α, β|r, s).←−−−−

τ
(2.12)
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As we see in (2.12), the involution τ exchanges spinor and conjugate spinor indices.
In the coordinate form it acts through complex conjugation upon the components
of spin-tensors.

Applying τ to H and d we get two other basic fields H̄ = τ(H) and d̄ =
τ(d). They are called the conjugate chirality operator and the conjugate spinor

metric respectively. In a canonically orthonormal chiral frame Ψ1, Ψ2, Ψ3, Ψ4 the
conjugate chirality operator H̄ is given by the matrix

H̄ ī
j̄ =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (2.13)

The conjugate spinor metric in such a frame is given by the matrices

d̄īj̄ =

∥

∥

∥

∥

∥

∥

∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥

∥

∥

∥

∥

∥

∥

, d̄īj̄ =

∥

∥

∥

∥

∥

∥

∥

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

∥

∥

∥

∥

∥

∥

∥

. (2.14)

Though the matrix (2.13) coincides with the matrix (2.9) and the matrices (2.14)
coincide with the matrices (2.8), H̄ 6= H and d̄ 6= d because the spin tensorial types
of these fields are different. The coincidence of their matrices occurring in a special
frame is destroyed in an arbitrary non-special frame.

The Dirac form D is invariant with respect to the involution τ , i. e. we have
τ(D) = D. In the coordinate form this equality is written as follows:

Dij̄ = Dj̄ i (2.15)

The equality (2.15) is easily derived from (2.10). Being derived in a special frame,
it remains valid in an arbitrary frame too.

In order to present the Dirac γ-field in the coordinate form we need to fix two
frames — some spinor frame Ψ1, Ψ2, Ψ3, Ψ4 and some spatial frame Υ0, Υ1, Υ2,
Υ3. We do it according to the first line in the diagram (2.11). In other words,
we choose some canonically orthonormal chiral frame Ψ1, Ψ2, Ψ3, Ψ4 in DM and
take its associated positively polarized right orthonormal frame in TM . Then the
Dirac γ-field γ is given by the following four matrices:

γ0 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

, γ1 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

∥

∥

∥

∥

∥

∥

∥

,

(2.16)

γ2 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 i

0 0 −i 0
0 −i 0 0
i 0 0 0

∥

∥

∥

∥

∥

∥

∥

, γ3 =

∥

∥

∥

∥

∥

∥

∥

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

∥

∥

∥

∥

∥

∥

∥

.

The number of a matrix in (2.16) is determined by the spatial index k of the
component γak

b . Two spinor indices a and b specify the position of the component
γak

b within the matrix γk.
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3. Some algebraic relationships for the basic fields.

First of all let’s note that the square of the chirality operator H is equal to the
unit operator 1. The same is true for the conjugate chirality operator H̄:

H2 = 1, H̄2 = 1. (3.1)

In the coordinate form the identities (3.1) are written as

4
∑

c=1

Ha
c H

c
b = δa

b ,

4
∑

c̄=1

H̄ ā
c̄ H̄

c̄
b̄

= δā
b̄
. (3.2)

The formulas (3.2) immediately follow from (2.9) and (2.13).
When some spatial basis Υ0, Υ1, Υ2, Υ3 is fixed, the matrices (2.16) can be

treated as the components of four operators γ0, γ1, γ2, γ3 acting in fibers of the
bundle DM . These operators satisfy the following well-known relationships:

{γp,γq} = 2 gpq 1. (3.3)

The curly brackets in (3.3) denotes the anticommutator of operators. In the coor-
dinate form the relationships (3.3) are written as

4
∑

c=1

γap
c γ

cq
b +

4
∑

c=1

γaq
c γ

cp
b = 2 gpq δa

b .

These relationships are proved by direct calculations with the use of (2.16). Low-
ering the upper spatial index of γ0, γ1, γ2, γ3 by means of the metric g, we get
other four operators γ0, γ1, γ2, γ3:

γk =

3
∑

q=0

gkq γ
q. (3.4)

The operators γ0, γ1, γ2, γ3 satisfy the following relationships:

{γp,γq} = 2 δp
q 1, {γp,γq} = 2 gpq 1. (3.5)

The relationships (3.5) are easily derived from (3.3) with the use of (3.4). The
explicit matrix presentation for the operators (3.4) is derived from (2.16):

γ0 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

, γ1 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

∥

∥

∥

∥

∥

∥

∥

,

(3.6)

γ2 =

∥

∥

∥

∥

∥

∥

∥

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

∥

∥

∥

∥

∥

∥

∥

, γ3 =

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

∥

∥

∥

∥

∥

∥

∥

.
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Like the formulas (2.16), thee formulas (3.6) are valid if we choose some canoni-
cally orthonormal chiral frame in DM and its associated positively polarized right
orthonormal frame in TM .

Note that the chirality operator H can be expressed through the operators
γ0, γ1, γ2, γ3 and through the other four operators γ0, γ1, γ2, γ3:

H =
i

24

3
∑

p=0

3
∑

q=0

3
∑

k=0

3
∑

m=0

ωpqkm γ
p γq γk γm,

H =
i

24

3
∑

p=0

3
∑

q=0

3
∑

k=0

3
∑

m=0

ωpqkm γp γq γk γm.

(3.7)

Here 24 = 4 ! . The formulas (3.7) are easily proved in special frames by means of
the formulas (2.7), (2.16), and (3.6). In this case they are reduced to

H = iγ0 γ1 γ2 γ3, H = −iγ0 γ1 γ2 γ3. (3.8)

By means of the direct calculations we find that

i γ0 γ1 γ2 γ3 =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

= −i γ0 γ1 γ2 γ3. (3.9)

Comparing (3.9) with (2.9), we prove the formulas (3.8). Note that (3.7) are proper
tensorial formulas. Having been proved in special frames, they remain valid in an
arbitrary pair of frames.

Note that in physical literature the operator γ5 = −iγ0 γ1 γ2 γ3 is introduced
(see § 22 in [1]). This is another bad tradition since γ5 is not a part of the Dirac
γ-field. It is a separate spin-tensorial field γ5 = −H. I prefer to use the chirality
operator H instead of the operator γ5.

The chirality operator H anticommutes with the operators γ0, γ1, γ2, γ3 and
with the operators γ0, γ1, γ2, γ3, i. e. we have the equalities:

{H,γk} = 0, {H,γk} = 0. (3.10)

The equalities (3.10) are derived in a special frame by means of the formulas (2.9),
(2.16), and (3.6). Then they are extended to arbitrary frame pairs by linearity.

Taking pairs of γ-operators, we can write the following commutation relation-
ships for the operators γ0, γ1, γ2, γ3 and for the operators γ0, γ1, γ2, γ3:

[H,γk γq] = 0, [H,γk γq] = 0. (3.11)

In the case of three operators we again have the anticommutation relationships

{H,γp γk γq} = 0, {H,γp γk γq} = 0. (3.12)

The formulas (3.11) and (3.12) are easily derived from the formula (3.10).
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Apart from (3.11) and (3.12) we need some additional formulas — not for com-
mutators and anticommutators, but for the products of γ-operators and the chirality
operator H. In the case of two γ-operators we have

Hγp γq = H gpq −
i

2

3
∑

r=0

3
∑

s=0

γr γs ω
rspq,

Hγp γq = H gpq −
i

2

3
∑

r=0

3
∑

s=0

γr γs ωrspq.

(3.13)

In the case of three γ-operators we have a little bit more complicated formulas:

γp γq γr = gpq γr + gqr γp − gpr γq + i

3
∑

s=0

ωpqrs Hγs,

γp γq γr = gpq γr + gqr γp − gpr γq + i

3
∑

s=0

ωpqrs Hγs.

(3.14)

The formulas (3.13) and (3.14) are proved by choosing some special pair of frames
where the operators H, γ0, γ1, γ2, γ3 and γ0, γ1, γ2, γ3 are given by the formulas
(2.9), (2.16), (3.6), while the metric tensor g is given by the matrix (2.1). For the
sake of completeness let’s write the following four formulas:

γp γq = 1 gpq −
i

2

3
∑

r=0

3
∑

s=0

Hγr γs ω
rspq,

γp γq = 1 gpq −
i

2

3
∑

r=0

3
∑

s=0

Hγr γs ωrspq.

(3.15)

Hγp γq γr = gpq Hγr + gqr Hγp − gpr Hγq + i

3
∑

s=0

ωpqrs γs,

Hγp γq γr = gpq Hγr + gqr Hγp − gpr Hγq + i

3
∑

s=0

ωpqrs γ
s.

(3.16)

We derive (3.15) and (3.16) multiplying both sides of (3.13) and (3.14) by H and
taking into account the first identity (3.1).

4. Trace formulas.

Note that the traces of all of the γ-operators γ0, γ1, γ2, γ3 are equal to zero.
The same is true for the γ-operators with lower spatial index γ0, γ1, γ2, γ3 as well
as for the products of γ-operators and the chirality operator H:

trγk =

4
∑

a=1

γak
a = 0, trγk =

4
∑

a=1

γa
ak = 0. (4.1)

tr(Hγk) = 0, tr(Hγk) = 0. (4.2)
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The formulas (4.1) and (4.2) are proved by direct calculations with the use of the
formulas (2.9), (2.16), and (3.6).

Note that tr(AB) = tr(BA). Therefore, for the traces of the double products
of γ-operators we have the following formulas:

tr(γp γq) = 4 gpq, tr(γp γq) = 4 gpq, tr(γp γq) = 4 δp
q . (4.3)

The formulas (4.3) are derived from the anticommutation relationships (3.3) and
(3.5). Applying the formulas (4.3) to (3.13), we derive

tr(Hγp γq) = 0, tr(Hγp γq) = 0, tr(Hγp γq) = 0. (4.4)

In order to calculate the traces of triple products of γ-operators we use the formulas
(3.14). These formulas immediately yield

tr(γp γq γr) = 0, tr(γp γq γr) = 0, (4.5)

tr(Hγp γq γr) = 0, tr(Hγp γq γr) = 0. (4.6)

The formulas (4.6) are derived from (3.16). In deriving both (4.5) and (4.6) we use
the formulas (4.1) and (4.2).

Now let’s proceed to the quadruple products of γ-operators. For the beginning
let’s lower the index r in the first formula (3.14):

γp γq γr = gpq γr + δq
r γ

p − δp
r γ

q + i

3
∑

n=0

ωpqmn gmr Hγn, (4.7)

Then we multiply the equality (4.7) on the right by γs:

γp γq γr γs = gpq γr γs + δq
r γ

p γs − δ
p
r γ

q γs + i

3
∑

n=0

ωpqmn gmr Hγn γs,

Passing to the traces of both sides of this equality, we take into account the formulas
(4.3) and (4.4). As a result we derive

tr(γp γq γr γs) = 4 gpq grs + 4 δq
r δ

p
s − 4 δp

r δ
q
s . (4.8)

In addition to the formula (4.8), there is a formula for tr(Hγp γq γr γs). However,
in this paper we do not need it.

5. The inverse conversion procedure.

Let’s return back to the conversion formula (1.1). Omitting the spinor indices a
and b, we can write it as an operator equality:

F = u 1 + vH +

3
∑

k=0

γk uk +

3
∑

k=0

Hγk vk +

3
∑

p=0

3
∑

q=0

γp γq wpq . (5.1)
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Applying the formulas (4.1), (4.2), and (4.3) to (5.1), taking into account that

tr1 = 4, trH = 0, (5.2)

and remembering the skew-symmetry of wpq , we derive

u =
1

4
trF. (5.3)

The inverse conversion procedure is a series of formulas expressing u, v, uk, vk, and
wpq through F. The formula (5.3) is the first formula in such a series. Here is the
second formula. It expresses v through F:

v =
1

4
tr(HF). (5.4)

The formula (5.4) is derived from (5.1) with the use of the formulas (5.2), (4.1),
(4.2), (4.4), and (3.1).

The third conversion formula should express the components of the covector field
u through F. We derive it multiplying (5.1) on the left by γk:

uk =
1

4
tr(γk F). (5.5)

In deriving (5.5) we use the formulas (5.2), (3.10), (4.1), (4.2), (4.3), (4.4), (4.5),
and (3.1). The fourth conversion formula is similar to (5.5):

vk =
1

4
tr(γk HF). (5.6)

In order to derive the fifth conversion formula we multiply the formula (5.1) on the
left by γq γp. Taking the traces of both sides, then we get

wpq =
1

16
tr(γq γp F)−

1

16
tr(γp γq F). (5.7)

In deriving (5.7) we use the formulas (4.6), (4.7) and take into account the skew
symmetry of wpq with respect to the indices p and q.

The formulas (5.3), (5.4), (5.5), (5.6), and (5.7) constitute the inverse conversion
procedure. They prove that the mapping (5.1), which produces a spin-operator F

from a collection of purely spatial fields u, v, u, v,w, is bijective.

6. Symmetric and skew-symmetric operators.

Note that the spinor metric d given by the matrices (2.8) in orthonormal spinor
frames defines a skew-symmetric bilinear form in fibers of the Dirac bundle DM :

d(ψ,φ) =

4
∑

a=1

4
∑

b=1

dab ψ
a φb. (6.1)

Definition 6.1. A spin-operator field F is called a symmetric operator if it is
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symmetric with respect to the bilinear form (6.1), i. e. if d(Fψ,φ) = d(ψ,Fφ) for
any two spinor fields ψ and φ.

Definition 6.2. A spin-operator field F is called a skew-symmetric operator if it
is symmetric with respect to the bilinear form (6.1), i. e. if d(Fψ,φ) = −d(ψ,Fφ)
for any two spinor fields ψ and φ.

In the coordinate form the symmetry and skew-symmetry conditions are written as

4
∑

c=1

F c
a dcb =

4
∑

c=1

dac F
c
b ,

4
∑

c=1

F c
a dcb = −

4
∑

c=1

dac F
c
b . (6.2)

Using (6.2), we easily prove that the unit operator 1 and the chirality operator H

are symmetric, while the γ-operators γk and γk are skew-symmetric. The products
Hγk and Hγk are symmetric. As for the products γp γq and γp γq, they have
both symmetric and skew-symmetric components:

(γp γq)sym = 1 gpq, (γp γq)skew = −
i

2

3
∑

r=0

3
∑

s=0

Hγr γs ω
rspq,

(6.3)

(γp γq)sym = 1 gpq, (γp γq)skew = −
i

2

3
∑

r=0

3
∑

s=0

Hγr γs ωrspq.

The formula (6.3) is easily derived from (3.15). Note that the symmetric parts of
the products γp γq and γp γq are symmetric with respect to the indices p and q,
while their skew-symmetric parts are skew-symmetric with respect to these indices.
This is not a general rule, but a pure coincidence in this particular case since the
operator symmetrization and the operator alternation for spin-operators are not
the same as the symmetrization and alternation for spatial indices.

Theorem 6.1. The spin-operator F given by the formula (5.1) is a symmetric

operator if and only if uk = 0 and wpq = 0.

Theorem 6.2. The spin-operator F given by the formula (5.1) is a skew-symmetric

operator if and only if u = 0, v = 0, and vk = 0.

These two theorems are easily proved on the base of the above results in this section
concerning the operators in the right hand side of the expansion (5.1).

7. Hermitian and anti-Hermitian operators.

Let’s recall that the bundle of Dirac spinorsDM is equipped with the Dirac form
D. Its components are given by the matrix (2.10) in self-adjoint spinor frames.
Using D, we can define a sesquilinear form in fibers of the bundle DM :

D(ψ,φ) =

4
∑

a=1

4
∑

b̄=1

Dab̄ ψ
b̄ φa. (7.1)

The sesquilinear form (7.1) is not positive. Its signature is (+,+,−,−).
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Definition 7.1. A spin-operator field F is called a Hermitian operator if it is
Hermitian with respect to the sesquilinear form (7.1), i. e. if D(Fψ,φ) = D(ψ,Fφ)
for any two spinor fields ψ and φ.

Definition 7.2. A spin-operator field F is called a anti-Hermitian operator if it
is anti-Hermitian with respect to the sesquilinear form (7.1), i. e. if for for any two
spinor fields ψ and φ we have D(Fψ,φ) = −D(ψ,Fφ).

In the coordinate form the conditions of being Hermitian and anti-Hermitian for
a spin-operator field F are written as follows:

4
∑

c̄=1

F
c̄
b̄Dac̄ =

4
∑

c=1

Dcb̄ F
c
a ,

4
∑

c̄=1

F
c̄
b̄ Dac̄ = −

4
∑

c=1

Dcb̄ F
c
a . (7.2)

Using (7.2), we easily prove that the unit operator 1 is Hermitian, the chirality
operator H is anti-Hermitian, and the γ-operators γk and γk are Hermitian op-
erators. The products Hγk and Hγk are also Hermitian operators. The double
products γp γq and γp γq have both Hermitian and anti-Hermitian parts:

(γp γq)Herm = 1 gpq, (γp γq)anti = −
i

2

3
∑

r=0

3
∑

s=0

Hγr γs ω
rspq,

(7.3)

(γp γq)Herm = 1 gpq, (γp γq)anti = −
i

2

3
∑

r=0

3
∑

s=0

Hγr γs ωrspq.

Comparing (7.3) with (6.3), we see that the subdivision of γp γq and γp γq into
Hermitian and anti-Hermitian components does coincide with their subdivision into
symmetric and skew-symmetric parts. This is not a general rule again, but a pure
coincidence in our particular case.

Theorem 7.1. The spin-operator F given by the formula (5.1) is a Hermitian

operator if and only if we have

u = u, v = −v, uk = uk, vk = vk, wpq = −wpq.

Theorem 7.2. The spin-operator F given by the formula (5.1) is an anti-Hermi-

tian operator if and only if we have

u = −u, v = v, uk = −uk, vk = −vk, wpq = wpq .

The proof of these two theorems is obvious. Indeed, multiplying a Hermitian and
an anti-Hermitian operators by a real scalar, we again get a Hermitian operator
and an anti-Hermitian operator respectively. Multiplying these operators by an
imaginary scalar, we convert a Hermitian operator into an anti-Hermitian operator
and vice versa. Therefore, in order to get a Hermitian operator F the coefficients
of Hermitian operators in the expansion (5.1) should be reals, while the coefficients
of anti-Hermitian operators in (5.1) should be imaginary numbers.
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8. Commutator equations.

Assume that some spatial frame Υ0, Υ1, Υ2, Υ3 is fixed. Then the Dirac γ-field
is subdivided into four γ-operators γ0, γ1, γ2, γ3 or equivalently γ0, γ1, γ2, γ3.
Under this assumption we consider the following commutator equations:

[F,γm] = Vm. (8.1)

Here F is an undetermined operator, while Vm are some given operators that con-
stitute a spin-tensorial field of the type (1, 1|0, 0|0, 1).

For the beginning we consider the special case where Vm = 0. In this case the
operator F in (8.1) should commute with the operators γ0, γ1, γ2, γ3:

[F,γm] = 0. (8.2)

Note that the γ-matrices (3.6) and their products complemented with the unit
matrix span the space of all 4×4 complex matrices. Hence (8.2) means F commutes
with all operators acting in fibers of the Dirac bundle. Such an operator is scalar,
i. e. it coincides with the unit operator up to a scalar factor:

F = u 1. (8.3)

The operator (8.3) is the general solution of the equation (8.2).

Theorem 8.1. In the case where the equations (8.1) have a solution, this solution

is unique up to the additive complement of the form (8.3).

In order to solve the equations (8.1) we substitute the conversion formula (5.1)
into (8.1) for F. As a result we obtain the equation

v [H,γm] +
3

∑

k=0

uk [γk,γm] +
3

∑

k=0

vk [Hγk,γm] +

+
3

∑

p=0

3
∑

q=0

wpq [γp γq,γm] = Vm.

(8.4)

In order to transform the first term in (8.4) we use (3.10). This formula yields

[H,γm] = 2Hγm − {H,γm} = 2Hγm =

3
∑

k=0

2 gmk Hγk. (8.5)

For the second term in (8.4) we use the skew symmetry of the commutator:

3
∑

k=0

uk [γk,γm] =
3

∑

p=0

3
∑

q=0

(γp γq − γq γp) gqm =

=

3
∑

p=0

3
∑

q=0

γp γq (up gqm − uq gpm).

(8.6)
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Transforming the third term in (8.4), we use the formulas (3.3) and (3.10):

3
∑

k=0

vk [Hγk,γm] =

3
∑

p=0

3
∑

q=0

vp (Hγp γq − γq Hγp) gqm =

=
3

∑

p=0

3
∑

q=0

vp H (γp γq + γq γp) gqm = 2 vm H.

(8.7)

And finally, in order to transform the fourth term in (8.4) we apply the formula
(3.14). As a result for this term we derive

3
∑

p=0

3
∑

q=0

wpq [γp γq,γm] =

3
∑

p=0

3
∑

q=0

3
∑

r=0

wpq (γp γq γr − γr γp γq) grm =

=

3
∑

p=0

3
∑

q=0

3
∑

r=0

2wpq (gqr γp − gpr γq) grm =

3
∑

k=0

4wkm γ
k.

(8.8)

Note that the operators Vm in (8.1) can also be expressed in the form of (5.1).
In order to distinguish this expression from the original expression (5.1) for the
operator F we set the tilde sign over the coefficients of it:

Vm = ũm 1 + ṽm H +

3
∑

k=0

γk ũmk +

3
∑

k=0

Hγk ṽmk +

3
∑

p=0

3
∑

q=0

γp γq w̃mpq . (8.9)

Using the formulas (8.5), (8.6), (8.7), (8.8), (8.9), we prove the following theorem.

Theorem 8.2. The commutator equations (8.1) are solvable if and only if the

operators Vm are presented by the formula (8.9) where ũm = 0; ũmk is skew

symmetric; ṽmk = 2 v gmk for some scalar v; wmpq = up gqm − uq gpm for the

components up of some covector.

The theorems 8.1 and 8.2 are helpful in studying Lie derivatives for Dirac spinors.
However, this is the subject for a separate paper.
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