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DIRECT AND INVERSE CONVERSION

FORMULAS ASSOCIATED WITH KHABIBULLIN’S

CONJECTURE FOR INTEGRAL INEQUALITIES.

R. A. Sharipov

Abstract. Khabibullin’s conjecture deals with two linear integral inequalities for
some non-negative continuous function q(t). The integral in the first of these two
inequalities converts q(t) into another function of one variable g(t). This integral
yields the direct conversion formula. An inverse conversion formula means a formula
expressing q(t) back through g(t). Such an inverse conversion formula is derived.

1. Introduction.

In this paper the following statement of Khabibullin’s conjecture is used.

Conjecture 1.1 (Khabibullin). Let α > 0 and let q = q(t) be a continuous

function such that q(t) > 0 for all t > 0. Then the inequality

1
∫

0





1
∫

x

(1 − y)n−1 dy

y



 q(tx) dx 6 tα−1 (1.1)

fulfilled for all 0 6 t < +∞ implies the inequality

+∞
∫

0

q(t) ln
(

1 +
1

t 2α

)

dt 6 π α

n−1
∏

k=1

(

1 +
α

k

)

.

Initially, the conjecture 1.1 was formulated in [1] and [2], though in some different
form. Later in [3] it was reformulated in a form very close to the above statement.
In [4] the conjecture 1.1 was proved to be valid for 0 < α 6 1/2. Another proof of
this result was given in [5].

The approach of the paper [5] is based on the kernel function An(x). The kernel
function An(x) is defined by the inner integral in the formula (1.1):

An(x) =

1
∫

x

(1− y)n
dy

y
. (1.2)
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In terms of the kernel function (1.2) the inequality (1.1) is written as

1
∫

0

An−1(x) q(t x) dx 6 tα−1, where t > 0. (1.3)

By changing the variable x for the variable y = t x in the integral (1.3) we get

t
∫

0

An−1(y/t) q(y) dy 6 tα, where t > 0. (1.4)

The value t = 0 is an exception when transforming (1.3) into (1.4). We omit this
exceptional value from our further considerations.

Looking at the left hand side of the inequality (1.4), we define the following
integral transformation that converts a function q = q(t) defined on the half-line
t > 0 into another function g = g(t) defined on the same half-line t > 0:

g(t) =

t
∫

0

An(y/t) q(y) dy. (1.5)

The formula (1.5) is called the direct conversion formula. The main goal of this
paper is to derive an inverse conversion formula that converts g(t) back to q(t).

2. Properties of the kernel function.

The kernel function An(x) used in the
direct conversion formula (1.5). Its prop-
erties were studied in [5]. This is a de-
creasing smooth function on the segment
(0, 1] vanishing at the point x = 1 and
having the logarithmic singularity

An(x) ∼ − lnx (2.1)

at the point x = 0. Its graph is shown on
Fig. 2.1. There are two explicit formulas
for An(x). Here is the first of them

An(x) =

∞
∑

m=n+1

(1− x)m

m
. (2.2)

From (2.2) we immediately derive the following vanishing conditions:

dkAn(x)

dxk
x=1

= 0 for k = 0, 1, . . . , n. (2.3)

The sum in the second explicit formula for the kernel function An(x) is finite

An(x) = − lnx−

n
∑

m=1

(1− x)m

m
. (2.4)
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The formula (2.1) is immediate from (2.4).
Note that the function An(x) enters the formula (1.5) in the form of An(y/t)

with the composite argument x = y/t. Substituting x = y/t into (2.4), we get

An(y/t) = − ln y + ln t−

n
∑

m=1

(1− y/t)m

m
. (2.5)

The function (2.5) can be treated as a function of two variables y and t. The partial
derivatives of An(y/t) with respect to y and t can be calculated explicitly:

∂An(y/t)

∂y
= −

(t− y)n

tn y
,

∂An(y/t)

∂t
=

(t− y)n

tn+1
. (2.6)

The formulas (2.6) are easily derived from the following formula:

dAn(x)

dx
=

−(1− x)n

x
. (2.7)

As for the formula (2.7), it is derived from (2.4) by means of direct calculations.
The reader can find more details in [5].

3. The first derivative of the function g(t).

The integral in the direct conversion formula (1.5) is assumed to be finite for at
least one value of t = t0 > 0 as a convergent improper Riemann integral or as a
Lebesque integral. Under this assumption we have the following lemma.

Lemma 3.1. Let q = q(t) be a non-negative continuous function on the open half-

line t > 0, i. e. q(t) > 0 for all t > 0. If the integral (1.5) is finite for some t0 > 0
then for all t > 0 the following integrals are finite:

t
∫

0

q(y) dy < ∞,

t
∫

0

| ln y| q(y) dy < ∞. (3.1)

Proof. Since q = q(t) is a continuous function, in order to prove the inequalities
(3.1) for all t > 0 it is sufficient to prove them for some particular t = y0 > 0. Since

t0
∫

0

An(y/t0) q(y) dy < ∞, (3.2)

we choose t = t0 and from (2.4) we derive An(y/t0) → +∞ as y → +0. Hence,
there is some y0 > 0 such that An(y/t0) > 1 for all 0 < y 6 y0. Multiplying by
q(y) and taking into account that q(y) > 0, from An(y/t0) > 1 we derive

q(y) 6 An(y/t0) q(y) for 0 < y 6 y0. (3.3)

Integrating the inequality (3.3) we get

y0
∫

0

q(y) dy 6

y0
∫

0

An(y/t0) q(y) dy. (3.4)
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Note that the integration interval in (3.4) differs from that of (3.2). However,
since both An(y/t0) and q(y) are continuous functions, extending or shrinking the
integration interval does not affect the finiteness of the integral (3.2). Therefore,
combining (3.2) and (3.4), we get the inequality

y0
∫

0

q(y) dy < ∞.

Thus, the first inequality (3.1) of the lemma 3.1 is proved.
In order to prove the second inequality we use the formula (2.4) again. Applying

this formula to the function An(y/t0), we obtain

lim
y→+0

An(y/t0)

| ln y|
= 1. (3.5)

The equality (3.5) means that there is some y0 > 0 such that

| ln y| < 2An(y/t0) for all 0 < y 6 y0. (3.6)

Multiplying (3.6) by q(y) and taking into account that q(y) > 0, we get

| ln y| q(y) 6 2An(y/t0) q(y) for all 0 < y 6 y0. (3.7)

Now, integrating the inequality (3.7), we obtain

y0
∫

0

| ln y| q(y) dy 6 2

y0
∫

0

An(y/t0) q(y) dy. (3.8)

Combining (3.2) and (3.8), we derive

y0
∫

0

| ln y| q(y) dy < ∞. (3.9)

The second inequality (3.1) of the lemma 3.1 is also proved. As we already said
above, the difference in upper limits of the integrals (3.1) and (3.9) does not matter
for finiteness of the integral (3.9). �

Let’s return back to the direct conversion formula (1.5) and, choosing some
constant b, let’s subdivide the integral (1.5) into two integrals:

I1(t) =

b
∫

0

An(y/t) q(y) dy, I2(t) =

t
∫

b

An(y/t) q(y) dy. (3.10)

Writing (3.10), we assume that 0 < b < t. Let c be another constant such that
0 < b < t < c. The first integral (3.10) is an improper integral with the singularity
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at its lower limit y = 0. The second integral (3.10) is a proper integral. In addition
to (3.10), let’s consider the following two integrals:

I3(t) =

b
∫

0

∂An(y/t)

∂t
q(y) dy, I4(t) =

t
∫

b

∂An(y/t)

∂t
q(y) dy. (3.11)

Due to (2.5) and (2.6) the functions

An(y/t) q(y),
∂An(y/t)

∂t
q(y) (3.12)

both are functions of two variables y and t which are continuous within the closed
rectangle R2 = {(y, t) ∈ R

2 : b 6 y 6 c, b 6 t 6 c}. Therefore we can apply the
theorem 4’ from § 53 of Chapter VI in [6] to the integrals I2(t) and I4(t). This
theorem says that I2(t) is a differentiable function such that

dI2(t)

dt
= I4(t) +An(t/t) q(t). (3.13)

Note that t/t = 1 and, according to (2.3), An(1) = 0. Therefore (3.13) reduces to

dI2(t)

dt
= I4(t). (3.14)

Now let’s proceed to the integrals I1(t) and I3(t) in (3.10) and (3.11). The
functions (3.12) both are continuous functions of two variables within the semi-
open rectangle R1 = {(y, t) ∈ R

2 : 0 < y 6 b, b 6 t 6 c}. Using (2.5) and (2.6),
one can easily prove that there are two constants C1 and C2 such that

|An(y/t) q(y)| 6 C1 (| ln y|+ 1) q(y),

∣

∣

∣

∣

∂An(y/t)

∂t
q(y)

∣

∣

∣

∣

6 C2 q(y) (3.15)

for all (y, t) within the semi-open rectangle R1. Due to (3.15) and (3.1) we can
apply the theorem 1 from § 54 of Chapter VI in [6] to the improper integrals I1(t)
and I3(t) in (3.10) and (3.11). This theorem says that both of these two improper
integrals converge uniformly in t over the interval b 6 t 6 c. Due to the uniform
convergence, we can apply the theorem 8 from § 54 of Chapter VI in [6] to I1(t)
and I3(t). This theorem says that I1(t) is a differentiable function and

dI1(t)

dt
= I3(t). (3.16)

Since g(t) = I1(t) + I2(t), now we can combine the formulas (3.14) and (3.16)
and derive the following formula for the first derivative of g(t):

g′(t) =

t
∫

0

∂An(y/t)

∂t
dy. (3.17)
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More precisely this result is formulated in the following theorem.

Theorem 3.1. If q = q(t) is a non-negative continuous function on the half-line

t > 0 and if the integral (1.5) is finite for at least one value t = t0 > 0, then g(t) is
a differentiable function and its derivative is given by the formula (3.17).

4. Higher order derivatives of the function g(t).

Let’s apply the second formula (2.6) to (3.17). Then the formula (3.17) for g′(t)
is brought to the following more explicit form:

tn+1 g′(t) =

t
∫

0

(t− y)n q(y) dy. (4.1)

Let’s denote g̃(t) = tn+1 g′(t) and write (4.1) as

g̃(t) =

t
∫

0

(t− y)n q(y) dy. (4.2)

The formula is quite similar to (1.5). It is even simpler than (1.5) since the function
(t − y)n has no logarithmic singularity, though this fact does not matter for us.
Applying the same arguments as in proving the theorem 3.1 above, we can prove
the following theorem for g̃(t).

Theorem 4.1. If q = q(t) is a non-negative continuous function on the half-line

t > 0 and if the integral (1.5) is finite for at least one value t = t0 > 0, then g̃(t)
in (4.2) is a differentiable function and its derivative is given by the formula

g̃′(t) =

t
∫

0

n (t− y)n−1 q(y) dy. (4.3)

The next theorem yields the second derivative of the function g̃(t).

Theorem 4.2. If q = q(t) is a non-negative continuous function on the half-line

t > 0 and if the integral (1.5) is finite for at least one value t = t0 > 0, then

the function g̃(t) in (4.2) is a twice differentiable function and its second order

derivative is given by the formula

g̃′′(t) =

t
∫

0

n (n− 1) (t− y)n−2 q(y) dy. (4.4)

Acting repeatedly, one can prove the series of theorems saying that g̃(t) is an n
times differentiable function and derive the formula generalizing (4.3) and (4.4):

dkg̃(t)

dtk
=

n!

(n− k)!

t
∫

0

(t− y)n−k q(y) dy, k = 0, . . . , n. (4.5)
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For k = n the formula (4.5) reduces to the following one:

dng̃(t)

dtn
= n!

t
∫

0

q(y) dy. (4.6)

Due to (4.6) the function g(t) in (1.5) is an (n+ 1) times differentiable function.

5. An inverse conversion formula.

An inverse conversion formula is almost immediate from (4.6). Indeed, due to
(3.1) the right hand side of the formula (4.6) is a differentiable function. Differen-
tiating (4.6) and substituting g̃(t) = tn+1 g′(t), we get

q(t) =
dn+1

dtn+1

(

tn+1 g′(t)

n!

)

. (5.1)

This is a required inverse conversion formula. Tne following ultimate theorem is
associated with the formula (5.1).

Theorem 5.1. If q = q(t) is a non-negative continuous function on the half-line

t > 0 and if the integral (1.5) is finite for at least one value t = t0 > 0, then the

function g(t) in (1.5) is an (n + 2) times differentiable function such that q(t) is

expressed through its derivatives according to the formula (5.1).

The theorem 5.1 does not claim the formula (5.1) to be the only way for express-
ing q(t) through g(t). But hopefully, the formula (5.1) could be a useful tool for
studying Khabibullin’s conjecture 1.1.
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