A NOTE ON THE $\operatorname{Sopfr}(n)$ FUNCTION.

Ruslan Sharipov

Abstract

The $\operatorname{Sopfr}(n)$ function is defined as the sum of prime factors of n each of which is taken with its multiplicity. This function is studied numerically. The analogy between $\operatorname{Sopfr}(n)$ and the primes distribution function is drawn and some conjectures for prime numbers formulated in terms of the $\operatorname{Sopfr}(n)$ function are suggested.

1. Introduction.

The $\operatorname{Sopfr}(n)$ function is defined as the sum of prime factors of its positive integer argument n (see [1]). For $n=1$ this function is defined to be equal to zero: $\operatorname{Sopfr}(1)=0$. If n is prime, then $\operatorname{Sopfr}(n)=n$. If n is a product of prime numbers

$$
\begin{equation*}
n=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}} \tag{1.1}
\end{equation*}
$$

then $\operatorname{Sopfr}(n)$ is calculated as the sum

$$
\begin{equation*}
\operatorname{Sopfr}(n)=k_{1} p_{1}+\ldots+k_{s} p_{s} \tag{1.2}
\end{equation*}
$$

Note that the prime factors p_{1}, \ldots, p_{s} in the sum (1.2) are taken with their multiplicities k_{1}, \ldots, k_{s} in the expansion (1.1). Therefore the function $\operatorname{Sopfr}(n)$ is similar to the logarithm. One can easily prove the following identity for it:

$$
\begin{equation*}
\operatorname{Sopfr}\left(n_{1} \cdot n_{2}\right)=\operatorname{Sopfr}\left(n_{1}\right)+\operatorname{Sopfr}\left(n_{2}\right) \tag{1.3}
\end{equation*}
$$

The $\operatorname{Sopfr}(n)$ function is used in defining Ruth-Aaron pairs named after two famous baseball players George Herman Ruth Jr. and Henry Louis Aaron (see [2]). In mathematics a Ruth-Aaron pair is a pair of consecutive numbers n and $n+1$ whose sums of prime factors are equal to each other:

$$
\begin{equation*}
\operatorname{Sopfr}(n)=\operatorname{Sopfr}(n+1) \tag{1.4}
\end{equation*}
$$

The numbers 714 and 715 constitute the most famous Ruth-Aaron pair.
Let x be an integer number and let p, q, r, and s be four numbers expressed through x by the following four polynomials:

$$
\begin{array}{ll}
p=8 x+5, & q=48 x^{2}+24 x-1, \tag{1.5}\\
r=2 x+1, & s=48 x^{2}+30 x-1 .
\end{array}
$$

[^0]Using the formulas (1.5), one easily derives that

$$
\begin{equation*}
p q+1=2^{2} r s, \quad \quad p+q=2 \cdot 2+r+s \tag{1.6}
\end{equation*}
$$

Due to (1.6) and (1.3), if p, q, r, s all are prime numbers, then the numbers $n=p q$ and $n+1=4 r s$ constitute a Ruth-Aaron pair, i. e. they satisfy the equality (1.4). Schinzel's H-conjecture (see [3], [4], and [5]) implies that there are infinitely many integer numbers x such that the numbers p, q, r, and s given by the polynomials (1.5) all are prime.

In this paper we treat $\operatorname{Sopfr}(n)$ as an analog of the primes distribution function $\pi(n)$. The value $\pi(n)$ of this function is defined as the number of positive primes less than or equal to n. Gauss and Legendre (see [6]) in 1792-1808 conjectured the following asymptotic behavior of the function $\pi(n)$:

$$
\begin{equation*}
\pi(n) \sim \frac{n}{\ln (n)} \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

In 1849 and in 1852 P. L. Chebyshev proved two propositions very close to (1.7). The proposition (1.7) itself was proved in 1896 by Hadamard [7] and Valée Poussin [8]. See [9] for the modern explanation of their proof.

The main goal of this paper is to study the function $\operatorname{Sopfr}(n)$ numerically and formulate some conjectures similar to (1.7) for this function.

2. The averaged $\operatorname{Sopfr}(n)$ Function.

The $\operatorname{Sopfr}(n)$ function is quite irregular. Looking at its graph (see [1]), one can find that the values of $\operatorname{Sopfr}(n)$ resemble random numbers. In order to make them more regular we average them over intervals between two consecutive squares:

$$
\begin{equation*}
A(n)=\sum_{i=n^{2}+1}^{(n+1)^{2}} \frac{\operatorname{Sopfr}(i)}{(n+1)^{2}-n^{2}} \tag{2.1}
\end{equation*}
$$

The function $A(n)$ in (2.1) is the averaged $\operatorname{Sopfr}(n)$ function. We study its values in two intervals $1 \leqslant n \leqslant 998$ and $1000 \leqslant n \leqslant 3161$. The graph of the function (2.1) in the first interval $1 \leqslant n \leqslant 998$ is shown in Fig. 2.1. It is presented by a sequence of points whose coordinates are rendered in logarithmic scale, i. e. $A_{n}=\left(x_{n}, y_{n}\right)$, where $x_{n}=\ln (A(n))$ and $y_{n}=\ln (n)$.

Looking at Fig. 2.1 below, one can see that the points A_{n} with $n \geqslant 122 \approx e^{4.8}$ are approximated by a straight line. We write the equation of this straight line as

$$
\begin{equation*}
x=\alpha y+\beta \tag{2.2}
\end{equation*}
$$

In order to calculate the parameters α and β in (2.2) we use the root mean squares method. For this purpose we use the following quadratic deviation function:

$$
\begin{equation*}
F(\alpha, \beta)=\sum_{n=122}^{998}\left(x_{n}-\alpha y_{n}-\beta\right)^{2} \tag{2.3}
\end{equation*}
$$

The quadratic function (2.3) has exactly one minimum point $\alpha=\alpha_{\min }, \beta=\beta_{\min }$.

This minimum point is determined by the following linear equations:

$$
\begin{equation*}
\frac{\partial F(\alpha, \beta)}{\partial \alpha}=0, \quad \frac{\partial F(\alpha, \beta)}{\partial \beta}=0 \tag{2.4}
\end{equation*}
$$

Fig 2.1
The function (2.3) and the equations (2.4) are computed numerically. Solving them,

Fig 2.2
we find the numeric values of α and β at the minimum of the function $F(\alpha, \beta)$:

$$
\begin{equation*}
\alpha \approx 1.820, \quad \quad \beta \approx-0.847 \tag{2.5}
\end{equation*}
$$

Having calculated the constants (2.5), now we draw the graph of the deviation function $\delta(n)=\ln (A(n))-\alpha \ln (n)-\beta$ in logarithmic scale. The graph of the function $\delta(n)$ in Fig. 2.2 is presented by a series of points $A_{n}=\left(x_{n}, y_{n}\right)$, where $x_{n}=\ln (n)$ and $y_{n}=\delta(n)$. Looking at this graph, we derive the following inequality for the deviation function $\delta(n)$:

$$
\begin{equation*}
-\delta_{1}<\delta(n)<\delta_{1}, \text { where } \delta_{1}=0.15 \text { and } 122 \leqslant n \leqslant 998 \tag{2.6}
\end{equation*}
$$

The next interval is $1000 \leqslant n \leqslant 3161$. The graph of the function (2.1) in this interval is shown in Fig. 2.3. Again it is presented by a sequence of points whose coordinates are rendered in logarithmic scale, i.e. $A_{n}=\left(x_{n}, y_{n}\right)$, where $x_{n}=\ln (A(n))$ and $y_{n}=\ln (n)$. The graph in Fig. 2.3 is also approximated by a

Fig 2.3
straight line. This straight line is given by the equation (2.2). The coefficients α and β in this case are calculated by solving the equations (2.4) for the following quadratic deviation function, which is similar to (2.3):

$$
\begin{equation*}
F(\alpha, \beta)=\sum_{n=1000}^{3161}\left(x_{n}-\alpha y_{n}-\beta\right)^{2} . \tag{2.7}
\end{equation*}
$$

The minimum of the function (2.7) corresponds to the following values of α and β :

$$
\begin{equation*}
\alpha \approx 1.860, \quad \beta \approx-1.115 \tag{2.8}
\end{equation*}
$$

The sharpness of the approximation of $A(n)$ by the straight line in Fig. 2.3 is expressed through the deviation function $\delta(n)=\ln (A(n))-\alpha \ln (n)-\beta$, where α
and β are given by the formulas (2.8):

$$
\begin{equation*}
-\delta_{2}<\delta(n)<\delta_{1}, \text { where } \delta_{2}=0.1 \text { and } 1000 \leqslant n \leqslant 3161 \tag{2.9}
\end{equation*}
$$

The inequalities (2.9) are similar to the above inequalities (2.6). They are derived by drawing the graph of the function $\delta(n)$. This graph is shown in Fig. 2.4 below.

Fig 2.4

3. Approximation conjectures.

Note that the parameter α in (2.8) is greater than α in (2.5). This mean that the slope of the straight line approximating the graph of the function $A(n)$ slightly grows as $n \rightarrow \infty$. To take into account this growth we replace the linear approximation in (2.2) by a nonlinear one. We choose the following formula for it

$$
\begin{equation*}
x=\alpha y+\beta+\gamma \ln (y)+\lambda e^{-y}+\mu e^{-2 y} \tag{3.1}
\end{equation*}
$$

The choice of (3.1) means that $A(n)$ is approximated by the formula

$$
\begin{equation*}
A(n) \approx B n^{\alpha}(\ln n)^{\gamma} \exp \left(\frac{\lambda}{n}+\frac{\mu}{n^{2}}\right), \text { where } B=e^{\beta} \tag{3.2}
\end{equation*}
$$

In order to find the optimal values of the parameters $\alpha, \beta, \gamma, \lambda$, and μ for the approximation (3.2) we apply the root mean squares method. Instead of (2.3) and (2.7) in this case we use the following deviation function:

$$
\begin{equation*}
F=\sum_{n=4}^{3161}\left(x_{n}-\alpha y_{n}-\beta-\gamma \ln y_{n}-\lambda e^{-y_{n}}-\mu e^{-2 y_{n}}\right)^{2} \tag{3.3}
\end{equation*}
$$

Remember that $x_{n}=\ln \left(A(n)\right.$ and $y_{n}=\ln (n)$ in (3.3). The optimal values of α, β, γ, λ, and μ are determined by solving the equations

$$
\begin{equation*}
\frac{\partial F}{\partial \alpha}=0, \quad \frac{\partial F}{\partial \beta}=0, \quad \frac{\partial F}{\partial \gamma}=0, \quad \frac{\partial F}{\partial \lambda}=0, \quad \frac{\partial F}{\partial \mu}=0 \tag{3.4}
\end{equation*}
$$

The equations (3.4) are similar to the equations (2.4). Here is their solution:

$$
\begin{equation*}
\alpha \approx 2.001, \quad \beta \approx-0.047, \quad \gamma \approx-1.056, \quad \lambda \approx 1.187, \quad \mu \approx-2.240 \tag{3.5}
\end{equation*}
$$

The exponential factor with λ and μ in (3.2) is a decreasing function of n. For this reason we consider the function

$$
B(n)=\frac{A(n)}{n^{\alpha}(\ln n)^{\gamma}}
$$

and draw its graph. Like the graph of $A(n)$, it is presented as a sequence of points:

Fig 3.1

Looking at the graph in Fig. 3.1, we can formulate the following conjecture.
Conjecture 3.1 (weak $\operatorname{Sopfr}(n)$ conjecture). There are four constants α, γ, B_{1} and B_{2} such that the averaged Sopfr-function $A(n)$ in (2.1) obey the inequalities

$$
\begin{equation*}
B_{1} n^{\alpha}(\ln n)^{\gamma} \leqslant A(n) \leqslant B_{2} n^{\alpha}(\ln n)^{\gamma} \text { for all } n>1 \tag{3.6}
\end{equation*}
$$

The graph points in Fig. 3.1 condense to a band as $n \rightarrow \infty$. Its width is restricted by the constants B_{1} and B_{2} in (3.6). The width of this band can vanish at infinity. For this option we can formulate the following conjecture.

Conjecture 3.2 (strong $\operatorname{Sopfr}(n)$ conjecture). There are three constants α, γ, and B such that $B>0$ and the following condition is fulfilled:

$$
\begin{equation*}
A(n) \sim B n^{\alpha}(\ln n)^{\gamma} \quad \text { as } \quad n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Note that the constants α and γ in (3.5) are are very close to integer numbers. Therefore we can formulate another conjecture.

Conjecture 3.3. The constants α and γ either in (3.6) or in (3.7) are explicit numbers $\alpha=2$ and $\gamma=-1$.

The averaged $\operatorname{Sopfr}(n)$ function (2.1) is similar to the primes distribution function. The above formulas (3.6) and (3.7) are similar to the formula (1.7).

References

1. Weisstein E. W., Sum of Prime Factors, MathWorld, Wolfram web resource http://math world.wolfram.com/SumofPrimeFactors.html.
2. Nelson C., Penney D.E., Pomerance C., 714 and 715, Journal of Recreational Mathematics 7 (1974), no. 2, 87-89.
3. Shinzel A., Sierpiński C., Sur certaines hypothèses concernant les nombres premiers, Acta Arithm. 4 (1958), 185-208.
4. Shinzel A., Sierpiński C., Erratum, Acta Arithm. 5 (1959), 259.
5. Weisstein E. W., Schinzel's Hypothesis, MathWorld, Wolfram web resource http://mathworld .wolfram.com/SchinzelsHypothesis.html.
6. Legendre A. M., Essai sur la théorie des nombres, Seconde Edition, Chez Courcier, Impri-meur-Libraire pour les Mathématiques, quai des Augustins, n° 57, Paris, 1808.
7. Hadamard J., Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences Arithmétiques, Bull. Soc. Math. France 24 (1896), 199-220.
8. De la Vallee Poussin C.-J., Recherches analytiques sur la theorie des nombres. Premiere partie: la fonction $\zeta(s)$ de Riemann et les nombres premiers en general, Ann. Soc. Sci. Bruxelles 20 (1896), 183-256.
9. Tenenbaum G., France M. M., The prime numbers and their distribution, American Math. Soc., USA, 2000.

Bashkir State University, 32 Zaki Validi street, 450074 Ufa, Russia
E-mail address: r-sharipov@mail.ru

[^0]: 2000 Mathematics Subject Classification. 11N60, 11N64, 11-04.

