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A MODEL WITH TWO QUANTUM PARTICLES

SIMILAR TO THE HYDROGEN ATOM.

Ruslan Sharipov

Abstract. The hydrogen atom with the Coulomb interaction is one of the exactly
solvable non-relativistic quantum models. Unlike many other exactly solvable models
it describes a real physical object providing the formulas for energy levels and station-
ary state wave functions of a real hydrogen atom. In this paper we modify the model
replacing the Coulomb interaction by the interaction of the proton and the electron
with the classical electromagnetic field serving as an intermediary transmitting the
electromagnetic interaction of these two charged quantum particles.

1. Introduction.

The standard hydrogen atom is a system composed by the proton p+ with the
mass mp and the electron e− with the mass me. This system is described by the
Shrödinger equation H Ψ = E Ψ with the following Hamilton operator:

H = −
~
2

2mp

∇2
p −

~
2

2me

∇2
e −

e2

|rp − re|
(1.1)

(see [1] or [2]). In order to solve the Shrödinger equation H Ψ = E Ψ the so called
center-of-mass coordinates are used:

R =
me re +mp rp

mp +me

, r = re − rp. (1.2)

Applying (1.2) to (1.1), one can easily derive the following expression for H :

H = −
~
2

2 (mp +me)
∇2

R −
~
2

2 m̃
∇2

r −
e2

|r|
, where m̃ =

memp

me +mp

. (1.3)

The formula (1.3) then is used for separating variables in the Shrödinger equation
H Ψ = E Ψ and deriving the standard formulas for E and Ψ.

In this paper we choose a different approach by omitting the Coulomb interaction
term in (1.1) and writing the Hamilton operator in the following form:

H = −
~
2

2mp

∇2
p −

~
2

2me

∇2
e +Hint. (1.4)

Here Hint is the interaction term describing the interaction of the classical elec-
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tromagnetic field with the proton and the electron. The explicit expression for H
including the interaction term Hint can be obtained from the formula (3.6) below.

Apart from (1.4), we consider the backward influence of two quantum particles
upon the classical electromagnetic field. For this purpose the variational approach
is applied and the corresponding Lagrangian is written.

2. A quantum particle in the classical electromagnetic field.

Massive particles in quantum mechanics are described by their wave functions.
Various wave equations are usually written for these wave functions. The time
dependent Shrödinger equation is one of them. It is written as follows:

i ~
∂ψ

∂t
= −

~
2

2m
∇2ψ. (2.1)

The equation (2.1) can be derived variationally, using the following action integral:

Sψ =
i ~

2

∫

(∂ ψ

∂ t
ψ − ψ

∂ ψ

∂ t

)

d3r dt−
~
2

2m

∫

|∇ψ|2 d3r dt. (2.2)

Though the equation (2.1) is not a relativistic equation, the integrals in (2.2) are
taken over the four-dimensional Minkowski space. The electromagnetic field is
introduced into the equation (2.1) through the following momentum transformation:

i ~

c

∂

∂ t
−→

i ~

c

∂

∂ t
−
e

c
φ, − i ~∇ −→ −i ~∇−

e

c
A. (2.3)

Here φ and A are the scalar potential and the vector potential of the electromag-
netic field respectively. The transformation (2.3) is known as the minimal coupling
(see [3]). Applying the minimal coupling transformation (2.3) to (2.1), we derive

i ~
∂ψ

∂t
= −

~
2

2m
∇2ψ + e φψ +

i e ~

2mc

(

(A,∇) + (∇,A)
)

ψ +
e2 |A|2

2m c2
ψ. (2.4)

The equation (2.4) describes a non-relativistic quantum particle with the mass m
and with the electric charge e in the classical electromagnetic field. Applying (2.3)
to (2.2), one can derive the action integral for the equation (2.4):

Sψ =
i ~

2

∫

(∂ ψ

∂ t
ψ − ψ

∂ ψ

∂ t

)

d3r dt− e

∫

φ |ψ|2 d3r dt−

−
~
2

2m

∫

|∇ψ|2 d3r dt−
i e ~

2mc

∫

ψ (A,∇ψ) d3r dt+

+
i e ~

2mc

∫

ψ (A,∇ψ ) d3r dt−
e2

2mc2

∫

|A|2 |ψ|2 d3r dt.

(2.5)

The action integral (2.5) corresponds to a quantum particle experiencing the influ-
ence of the classical electromagnetic field. In order to describe the electromagnetic
field itself the action integral of the free electromagnetic field is used (see [4] or [5]):

Sfef = −
1

16 π c

∫ 3
∑

p=0

3
∑

q=0

Fpq F
pq d4r =

∫

|E|2 − |H|2

8 π
d3r dt. (2.6)
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If we need to describe the backward influence of a quantum particle upon the
electromagnetic field, we should add the action integrals (2.5) and (2.6):

S = Sψ + Sfef (2.7)

The total action integral S implies three Euler-Lagrange equations:

δS

δ ψ
= 0,

δS

δ φ
= 0,

δS

δA
= 0. (2.8)

The first equation (2.8) leads to (2.4). The other two equations (2.8) coincide with
the Maxwell equations comprising charges and currents:

divE = 4 π ρ, rotH−
1

c

∂ E

∂ t
=

4 π

c
j. (2.9)

Due to (2.7) the charge density ρ and the current density j in (2.9) are determined
by the action integral (2.5) according to the formulas

ρ = −
δSψ
δ φ

, j = c
δSψ
δA

. (2.10)

Substituting the explicit expression (2.5) for Sψ into (2.10), we derive:

ρ = e |ψ|2, j =
i e ~

2m

(

ψ∇ψ − ψ∇ψ
)

−
e2A

mc
|ψ|2. (2.11)

The formulas (2.11) are compatible with the probabilistic interpretations of the
wave function ψ (see [1] and [2]).

The following formulas are well known (see [4] or [5]):

E = −∇φ−
1

c

∂A

∂ t
, H = rotA. (2.12)

They express the electric field E and the magnetic fieldH through the corresponding
vectorial potential A and scalar potential φ.

3. A couple of quantum particles

in the classical electromagnetic field.

The hydrogen atom, as well as our present model, is a couple of two quantum
particles — the proton and the electron. Such a couple of particles is described by a
single wave function Ψ but depending on two spatial variables rp and re which are
radius-vectors of the proton and the electron respectively. Apart from rp and re,
the joint wave function of the proton and the electron depends on the time variable:

Ψ = Ψ(t, rp, re). (3.1)

The analog of the action integral (2.2) for the wave function (3.1) is written as

SΨ =
i ~

2

∫

(∂Ψ

∂ t
Ψ−Ψ

∂Ψ

∂ t

)

d3rp d
3re dt−

−

∫
(

~
2 |∇pΨ|2

2mp

+
~
2 |∇eΨ|2

2me

)

d3rp d
3re dt.
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Similarly, the analog of the action integral (2.5) is written as follows:

SΨ =
i ~

2

∫

(∂Ψ

∂ t
Ψ−Ψ

∂Ψ

∂ t

)

d3rp d
3re dt−

− e

∫

(

φp − φe
)

|Ψ|2 d3rp d
3re dt−

−

∫
(

~
2 |∇pΨ|2

2mp

+
~
2 |∇eΨ|2

2me

)

d3rp d
3re dt−

−
i e ~

2 c

∫
(

Ψ(Ap,∇pΨ)

mp

−
Ψ(Ae,∇eΨ)

me

)

d3rp d
3re dt+

+
i e ~

2 c

∫
(

Ψ(Ap,∇pΨ)

mp

−
Ψ(Ae,∇eΨ)

me

)

d3rp d
3re dt−

−
e2

2 c2

∫
(

|Ap|
2

mp

+
|Ae|

2

me

)

|Ψ|2 d3rp d
3re dt.

(3.2)

For the sake of brevity in (3.2) the following notations are used:

φp = φ(t, rp), Ap = A(t, rp),
(3.3)

φe = φ(t, re), Ae = A(t, re).

Like in (2.5), in order to describe the compete system including the classical elec-
tromagnetic field we add the action integral (2.6) to (3.2):

S = SΨ + Sfef (3.4)

Then, like in (2.8), three Euler-Lagrange equations for S in (3.4) are written:

δS

δΨ
= 0,

δS

δ φ
= 0,

δS

δA
= 0. (3.5)

The first equation (3.5) leads to the time dependent Shrödinger equation for
the proton and the electron in the classical electromagnetic field. This equation is
similar to the equation (2.4), but a little bit more complicated than it:

i ~
∂Ψ

∂t
= −

~
2 ∇2

pΨ

2mp

−
~
2 ∇2

e Ψ

2me

+ e φpΨ− e φeΨ+

+
i e ~

2mp c

(

(Ap,∇p) + (∇p,Ap)
)

Ψ−
i e ~

2me c

(

(Ae,∇e) + (∇e,Ae)
)

Ψ+

+
e2 |Ap|

2

2mp c2
Ψ+

e2 |Ae|
2

2me c2
Ψ.

(3.6)

In the equation (3.6) the same notations (3.3) are used as in (3.2).
The second and the third equations (3.5) lead to the Maxwell equations (2.9).

The formulas for ρ and j are similar to (2.10):

ρ = −
δSΨ

δ φ
, j = c

δSΨ

δA
.
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However, the ultimate expressions for them are different from (2.11):

ρ = e

∫

|Ψp|
2 d3re − e

∫

|Ψe|
2 d3rp,

j =
i e ~

2mp

∫

(

Ψp∇Ψp −Ψp∇Ψp
)

d3re −
e2A

mp c

∫

|Ψp|
2 d3re−

−
i e ~

2me

∫

(

Ψe∇Ψe −Ψe∇Ψe
)

d3rp −
e2A

me c

∫

|Ψe|
2 d3rp.

(3.7)

In the above formulas (3.7) the following notations are used:

Ψp = Ψ(t, r, re), Ψe = Ψ(t, rp, r). (3.8)

The notations (3.8) are similar to the notations (3.3). For the sake of completeness,
in addition to (3.6) and (2.9), one should write the equations (2.12) expressing H

and E through φ and A.

4. Spherically symmetric eigenstates of the model.

It is known that the ground state of the hydrogen atom is spherically symmetric.
By analogy we look for eigenstates of our model in the class of spherically symmetric
wave functions. Each eigenstate is a stationary state. Its time dependence is given
by an oscillating exponential factor. As a result we get

Ψ(t, rp, re) = ψ(rp, re) exp(−i E t/~). (4.1)

where rp = |rp| and re = |re|. Apart from (4.1), we assume the electric and magnetic
fields E and H associated with the eigenstate to be stationary and spherically
symmetric. As a result, denoting r = |r|, we get

E(t, r) = E(r)
r

r
, H(t, r) = H(r)

r

r
. (4.2)

Lemma 4.1. Each spherically symmetric stationary magnetic field given by the

second formula (4.2) is identically zero.

Proof. Note that the second equality (2.12) is equivalent to the Maxwell equation
divH = 0. The integral presentation of divH = 0 is

∮

S

(H, n) dS = 0, (4.3)

where S is an arbitrary closed surface and n is the unit normal vector of S. Sub-
stituting the second formula (4.2) into (4.3) and applying (4.3) to the sphere with
the radius r whose center is at the origin, we derive

∮

S

(H, n) dS = 4 π r2H(r) = 0. (4.4)
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The equality (4.4) yields H(r) = 0. Thus Lemma 4.1 is proved. �

Since H = 0, we can choose A = 0 for the corresponding vector potential A.
The spherically symmetric stationary electric field given by the first formula (4.2) is
associated with a spherically symmetric stationary scalar potential. Thus we have

φ(t, r) = φ(r), A(t, r) = 0. (4.5)

The next step is to apply (2.12) and (2.9) to (4.5). This yields

d2φ

dr2
+

2

r

d φ

dr
= −4 π ρ, j = 0. (4.6)

The first equation (4.6) is a version of the Poisson equation △φ = −4 π ρ (see [6]).
Now let’s substitute (4.6) along with (4.1) into the time-dependent Shrödinger

equation (3.6). As a result this equation transforms to

−
~
2∇2

p ψ

2mp

−
~
2 ∇2

e ψ

2me

+ e φp ψ − e φe ψ = E ψ. (4.7)

The notations (3.3) now yield φp = φ(rp) and φe = φ(re), where rp = |rp| and
re = |re|. Keeping in mind these notations, we can separate variables and break
(4.7) into two equations if we substitute ψ(rp, re) = ψp(rp)ψe(re):

−
~
2∇2

p ψp

2mp

+ e φp ψp = Ep ψp,

−
~
2 ∇2

e ψe
2me

− e φe ψe = Ee ψe.

(4.8)

The total eigenvalue E is the sum of two eigenvalues Ep and Ee in (4.8):

E = Ep + Ee. (4.9)

Having subdivided the equation (4.7) into two equations (4.8), we can omit the
particle indices in the arguments of the functions ψp and ψe, i. e. we can write
ψp = ψp(r) and ψe = ψe(r), where r = |r|. Then the equations (4.8) are written as

−
~
2∇2ψp
2mp

+ e φ(r)ψp = Ep ψp,

−
~
2 ∇2ψe
2me

− e φ(r)ψe = Ee ψe.

(4.10)

The functions ψp = ψp(r) and ψe = ψe(r) are spherically symmetric. Therefore the
equations (4.10) are written as ordinary differential equations

−
~
2

2mp

(

d2ψp
dr2

+
2

r

dψp
dr

)

+ e φ(r)ψp = Ep ψp,

−
~
2

2me

(

d2ψe
dr2

+
2

r

dψe
dr

)

− e φ(r)ψe = Ee ψe.

(4.11)
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Though the equations (4.11) look like two independent equations, they are not
actually independent since φ(r) is not a given function in them. It is defined by
the first equation (4.6). In order to specify the charge density ρ in the right hand
side of this equation we use the first formula (3.7). Upon substituting the product
ψ(rp, re) = ψp(rp)ψe(re) and (4.9) into (4.1) we get

Ψ(t, rp, re) = ψp(rp)ψe(re) exp(−i Ep t/~) exp(−i Ee t/~). (4.12)

The wave functions ψp = ψp(r) and ψe = ψe(r) in (4.12) are assumed to be nor-
malized to unity according to their probabilistic interpretations:

∫

|ψp|
2 d3r = 4 π

∞
∫

0

|ψp(r)|
2 r2 dr = 1,

∫

|ψe|
2 d3r = 4 π

∞
∫

0

|ψe(r)|
2 r2 dr = 1.

(4.13)

Substituting (4.12) into the first formula (3.7) and taking into account (4.13), we
derive the following expression for the charge density ρ:

ρ = ρ(r) = e |ψp(r)|
2 − e |ψe(r)|

2. (4.14)

Combining (4.14) with the first equation (4.6), we get the differential equation

d2φ

dr2
+

2

r

d φ

dr
= 4 π e |ψe(r)|

2 − 4 π e |ψp(r)|
2. (4.15)

The equations (4.11) complemented with the equation (4.15) constitute a closed
system of three ordinary differential equations for two complex-valued functions
ψp = ψp(r) and ψe = ψe(r) and for one real-valued function φ = φ(r).

Definition 4.1. A solution of the system of differential equations (4.11) and (4.15)
on the half-line 0 < r < +∞ is called an eigenstate of the model if the functions
ψp = ψp(r) and ψe = ψe(r) are square-integrable in the sense of the formulas (4.13)
along with their derivatives so that

−

∫

ψp∇
2ψp d

3r =

∫

|∇ψp|
2 d3r <∞,

−

∫

ψe∇
2ψe d

3r =

∫

|∇ψe|
2 d3r <∞.

(4.16)

Lemma 4.2. For any eigenstate of the model given by a solution of the equations

(4.11) and (4.15) not only the total eigenvalue E in (4.9) is a real number, but the

separate eigenvalues Ep and Ee are also real numbers.

Lemma 4.2 is easily proved by applying (4.13) and (4.16) to the equations (4.11)
written in the form of (4.10).

Note that if the functions ψp = ψp(r) and ψe = ψe(r) are given, the equation
(4.15) is a linear non-homogeneous ordinary differential equation of the second
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order. Its general solution is defined by the formula with two arbitrary constants

φ = φ0 + C1 +
C2

r2
, (4.17)

provided some particular solution φ = φ0(r) is known.

Lemma 4.3. For any eigenstate of the model given by a solution of the equations

(4.11) and (4.15) there is a particular solution of the equation (4.15) such that

φ0(r) =

∞
∫

r

1

r2

(

r
∫

0

4 π e
(

|ψp(r)|
2 − |ψe(r)|

2
)

r2 dr

)

dr. (4.18)

The integrals in (4.18) do exist and are finite since ψp and ψe are square-
integrable functions in the sense of (4.13). Therefore Lemma 4.3 is easily proved
by direct calculations upon substituting (4.18) into (4.15). Note that the function
(4.18) obeys the condition φ0 −→ 0 as r −→ +∞. Combining this fact with the
formula (4.17), we derive the following lemma.

Lemma 4.4. For any eigenstate of the model given by a solution of the equations

(4.11) and (4.15) there is a finite limit C = lim
r→+∞

φ(r) 6= ∞.

Note that the equations (4.11) and (4.15) are invariant under the transformations

φ→ φ− C, Ep → Ep − eC, Ee → Ee + eC, (4.19)

where C is some constant. The transformations (4.19) do not change the total
eigenvalue E in (4.9).

Combining Lemma 4.4 with (4.19), we can formulate the next lemma.

Lemma 4.5. For any eigenstate of the model given by a solution of the equations

(4.11) and (4.15) there is an associated eigenstate such that lim
r→+∞

φ(r) = 0. The

partial eigenvalues Ep and Ee of this associated eigenstate are called energy levels

of the proton and the electron respectively.

If the function φ = φ(r) is fixed, then the equations (4.11) are linear homogeneous
ordinary differential equations of the second order with respect to the functions ψp
and ψe. These equations are very similar to each other. Therefore we can write
them in a unified way omitting the particle indices:

−
~
2

2m

(

ψ ′′ +
2

r
ψ ′

)

+ u(r)ψ = ε ψ. (4.20)

The square-integrability conditions (4.13) and (4.16) can also be written in a unified
way as the following two conditions for solutions of the equation (4.20):

∞
∫

0

|ψ|2 r2 dr <∞,

∞
∫

0

|ψ′|2 r2 dr <∞. (4.21)
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For any two solutions ψ1 and ψ2 of the differential equation (4.20) we construct
their Wronskian: W = W (ψ1, ψ2) = ψ1 ψ

′

2 − ψ ′

1 ψ2 (see [7]). One can easily prove
the following facts concerning the Wronskian W :

1) for any two solutions ψ1 and ψ2 of the differential equation (4.20) their Wron-
skian W = W (ψ1, ψ2) obeys the first order ordinary differential equation
W ′ + 2W/r = 0 whose general solution is

W =
C

r2
, where C = const; (4.22)

2) two solutions ψ1 and ψ2 of the differential equation (4.20) are linearly depen-
dent if and only if their Wronskian W =W (ψ1, ψ2) is zero.

Lemma 4.6. Any two solutions ψ1 and ψ2 of the differential equation (4.20) obey-
ing both square-integrability conditions (4.21) are linearly dependent.

Proof. It is known that the product of any two square-integrable functions is inte-
grable (see [8]). Using this fact, from (4.21) we derive

∣

∣

∣

∣

∞
∫

0

W r2 dr

∣

∣

∣

∣

6

∞
∫

0

|ψ1 ψ
′

2 −ψ′

1 ψ2| r
2 dr 6

∞
∫

0

(|ψ1 ψ
′

2|+ |ψ′

1 ψ2|) r
2 dr <∞. (4.23)

On the other hand, substituting (4.22) into the left hand side of (4.23), we get

∣

∣

∣

∣

∞
∫

0

W r2 dr

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∫

0

C dr

∣

∣

∣

∣

=

{

0 if C = 0,

∞ if C 6= 0.
(4.24)

Comparing (4.24) and (4.23), we find that C = 0 and W = W (ψ1, ψ2) = 0. The
solutions ψ1 and ψ2 are linearly dependent since their Wronskian is zero. �

Lemma 4.7. Any nonzero complex-valued solution ψC of the differential equation

(4.20) obeying both square-integrability conditions (4.21) is produced from some real-

valued solution ψR of the same differential equation obeying both conditions (4.21)
by multiplying it by some complex constant: ψC = C ψR.

Proof. The equation (4.20) is a linear ordinary differential equation with real coeffi-
cients. Therefore, if ψC is its nonzero solution, then the complex conjugate function
ψC is also a solution of the equation (4.20). It is clear that if ψC obeys both condi-
tions (4.21), then so does the complex conjugate function ψC. Applying Lemma 4.6
to the functions ψC and ψC, we find that they are linearly dependent, i. e. ψC = K ψC,
where K is some complex constant. Now we define two real-valued functions

ψ1 =
ψC + ψC

2
=

1 +K

2
ψC, ψ2 =

ψC − ψC

2 i
=

1−K

2 i
ψC. (4.25)

It is easy to see that the functions (4.25) are real-valued solutions of the equation
(4.20) obeying both square-integrability conditions (4.21). At least one of them is
nonzero. Therefore at least one of the following two formulas

ψC =
2

1 +K
ψ1, ψC =

2 i

1−K
ψ2
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yields a valid expression ψC = C ψR proving Lemma 4.7. �

Now we return to the equations (4.11) and apply Lemma 4.7 to them. As a
result we easily prove the following lemma strengthening Lemma 4.5.

Lemma 4.8. For any eigenstate of the model given by a solution of the equations

(4.11) and (4.15) there is an associated eigenstate with purely real-valued eigenfunc-

tions ψp(r) and ψe(r) such that lim
r→+∞

φ(r) = 0.

Let’s recall that apart from the equations (4.11) and (4.15) we have the equality
j = 0 in (4.6). Applying the second formula (3.7) to it and taking into account the
equality A = 0 from (4.5), we derive the equation

i e ~

2mp

(

ψp∇ψp − ψp∇ψp
)

=
i e ~

2me

(

ψe∇ψe − ψe∇ψe
)

. (4.26)

The equation (4.26) is fulfilled identically if we apply Lemma 4.8 and choose purely
real-valued eigenfunctions ψp and ψe. But even if they are not purely real-valued,
according to Lemma 4.7, they differ from purely real ones by some constant factors.
In this case the equation (4.26) is also fulfilled identically.

Going on, one can use more complicated methods from [9] for studying the
equations (4.11). Conjecturing some integrability conditions for φ(r) at infinity,
one can prove that the energy levels Ep and Ee are non-positive, i. e. Ep 6 0 and
Ee 6 0. The Volterra-type integral equations from [9] can be applied for calculating
ψp(r), ψe(r), and φ(r) numerically along with the associated eigenvalues Ep and Ee.
However these steps require much more efforts such as choosing a proper software
and writing computer code. They are left for a separate paper.

5. Comparison with the standard model

of the hydrogen atom.

As the reader can see above the standard model of the hydrogen atom is much
more simple than the present model. Its spectrum is calculated explicitly, while
our model require numeric computations. But there is also a conceptual differ-
ence. In the standard model the proton and the electron behave as classical point
charges when producing the electromagnetic field in the form of Coulomb poten-
tial. Then they interact with the produced Coulomb field quantum mechanically
as distributed charges according to their wave function in the Shrödinger equation
with the Hamilton operator (1.1).

Our present model is more logically coherent. The proton and the electron in
this model behave quantum mechanically as distributed sources in creating the
electromagnetic field (see formulas (3.7)) and then they behave again quantum me-
chanically when interacting with the created field (see Shrödinger equation (3.6)).

Which of the two models is more congruent to the nature? I hope to answer this
question upon computing the spectrum of the new model in forthcoming papers.
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