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ON ROOT MEAN SQUARE APPROXIMATION

BY EXPONENTIAL FUNCTIONS.

Ruslan Sharipov

Abstract. The problem of root mean square approximation of a square integrable
function by finite linear combinations of exponential functions is considered. It is
subdivided into linear and nonlinear parts. The linear approximation problem is
solved. Then the nonlinear problem is studied in some particular example.

1. Introduction.

Exponential functions of the form eλ x arise as solutions of linear differential
equations. In physics they describe oscillatory and damped oscillatory processes.
Assume that f(x) is a complex-valued square integrable function with the argument
x belonging to the interval [−π, +π] of the real line R:

f(x) ∈ L2([−π, +π]). (1.1)

Let’s consider a finite sequence of exponential functions

eλ1x, . . . , eλnx, (1.2)

where λ1, . . . , λn are distinct complex numbers, i. e. λ i 6= λj . Using the functions
(1.2), we compose a linear combination with complex coefficients:

φ(x) =

n
∑

i=1

ai e
λix. (1.3)

We say that the function (1.3) approximates the square integrable function (1.1) if
the L2-norm of their difference is sufficiently small:

‖f − φ‖ =

√

√

√

√

√

1

2 π

+π
∫

−π

|f(x)− φ(x) |2 dx. (1.4)

The quantity (1.4) is also known as the root mean square deflection of φ from f . The
problem of minimizing this deflection is called the root mean square approximation
problem. It can be attributed to the class of variational problems.
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The problem of minimizing the root mean square deflection (1.4) is subdivided
into linear and nonlinear parts. The linear problem consists in finding optimal
coefficients a1, . . . , an in (1.3), provided λ1, . . . , λn are fixed. This problem is
similar to those studied by A. F. Leontiev and his school (see [1]). In the case of a
finite set of exponential functions (1.2) it is solved completely in an explicit form.

The nonlinear approximation problem consists in minimizing the solution of the
linear problem by varying λ1, . . . , λn and choosing optimal values for them. It
arises from the applied problem of numerical separation of a noised signal presum-
ably being a mixture of oscillatory and damped oscillatory signals. In this form the
problem was suggested by A. S. Vishnevskiy, president of PhysTech Co., the weigh-
ing technologies company. In the present paper the nonlinear problem is studied in
the example of the very simple function f(x) = sign(x).

2. Solution of the linear approximation problem.

From (1.4) one can easily derive the following formula for the the root mean
square deflection of the function (1.3) from f :

‖f − φ‖2 = ‖f‖2 −
n
∑

j=1

aj
〈

f
∣

∣eλjx
〉

−

−
n
∑

i=1

ai
〈

eλix
∣

∣f
〉

+

n
∑

i=1

n
∑

j=1

gij ai a
j .

(2.1)

By means of angular brackets in (2.1) we denote the L2-scalar product

〈

a
∣

∣b
〉

=
1

2 π

+π
∫

−π

a(x) b(x) dx (2.2)

Overlined variables and functions in (2.1) and (2.2) mean complex conjugates.
Through gij in (2.1) we denote the components of the Gram matrix G:

gij =
〈

eλix
∣

∣ eλjx
〉

. (2.3)

From (2.2) one can easily derive the following property of the L2-scalar product

〈

a
∣

∣b
〉

=
〈

b
∣

∣a
〉

. (2.4)

The property (2.4) implies the following relationships:

gij = gji,
〈

f
∣

∣eλix
〉

=
〈

eλix
∣

∣f
〉

. (2.5)

If we denote F = ‖f − φ‖2 and treat F as a function of the complex coeffi-
cients a1, . . . , am from (2.1), then the minimum of the function F (a1, . . . , am) is
determined by the vanishing conditions for its partial derivatives:

∂F

∂ai
= 0,

∂F

∂ai
= 0, where i = 1, . . . , n. (2.6)
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Calculating the derivatives (2.6) for (2.1), we derive the equations

n
∑

i=1

gij ai =
〈

f
∣

∣eλjx
〉

,

n
∑

j=1

gij a
j =

〈

eλix
∣

∣f
〉

, (2.7)

where i = 1, . . . , n. Due to (2.5) two sets of equations (2.7) differ from each other
only by complex conjugation. Hence it is sufficient to solve only one of them.

We choose for solving the second set of the equations (2.7). It is solved with the
use of the inverse Gram matrix G−1. Let’s denote through gij the components of
the transpose of the inverse Gram matrix (G−1)⊤. Then the quantities gij and gij

are related to each other as follows:

n
∑

k=1

gik g
jk = δ

j
i ,

n
∑

k=1

gkj gki = δ
j
i . (2.8)

Here δ
j
i are the components of the unit matrix. They are called Kronecker’s delta.

Applying the second relationship (2.8) to the second set of equations (2.7), we
get their solution. This solution is given by the formula

aj =

n
∑

i=1

gij
〈

eλix
∣

∣f
〉

, where j = 1, . . . , n. (2.9)

Substituting (2.9) into (2.1), we derive

Fmin = ‖f‖2 −
n
∑

i=1

n
∑

j=1

gij
〈

eλix
∣

∣f
〉 〈

f
∣

∣eλjx
〉

. (2.10)

The formulas (2.9) and (2.10) yield a solution of the linear approximation problem.

3. One frequency approximation for the sign function.

The minimum value Fmin in (2.10) is a function of λ1, . . . , λn. Let’s denote

Φ = Φ(λ1, . . . , λn) = Fmin. (3.1)

The nonlinear approximation problem consists in finding the absolute minimum of
the function (3.1) as λ1, . . . , λn run over Cn. Though potentially this could be not
a minimum, but infimum. In any case, since 0 6 Fmin 6 ‖f‖2, the minimal value
of the function Φ(λ1, . . . , λn) does exist and is finite.

Let’s consider the case n = 1. We call it the one frequency case since the
quantities λ1, . . . , λn are often associated with eigenfrequencies in applications. In
order to study this case thoroughly we choose

f(x) = sign(x) =

{ −1 for x < 0,

1 for x > 0
(3.2)

as an example. In the one frequency case the formula (2.10) simplifies. It turns to

Fmin = ‖f‖2 −
〈

eλ1x
∣

∣f
〉 〈

f
∣

∣eλ1x
〉

g11
. (3.3)
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The norm of the function (3.2) is easily calculated: ‖f‖ = 1. The denominator
g11 in the formula (3.3) is also easily calculated:

g11 =
1

2 π

+π
∫

−π

e(λ1+λ̄1)x dx =
e(λ1+λ̄1)π − e−(λ1+λ̄1)π

2 π (λ1 + λ̄1)
. (3.4)

Now let’s calculate the quantities
〈

eλ1x
∣

∣f
〉

and
〈

f
∣

∣eλ1x
〉

in (3.3):

〈

eλ1x
∣

∣f
〉

=
1

2 π

+π
∫

−π

eλ̄1x sign(x) dx =
eλ̄1π + e−λ̄1π

2 π λ̄1

− 1

π λ̄1

, (3.5)

〈

f
∣

∣eλ1x
〉

=
1

2 π

+π
∫

−π

sign(x) eλ1x dx =
eλ1π + e−λ1π

2 π λ1

− 1

π λ1

. (3.6)

The spectral parameter λ1 is a complex variable. Therefore we write

λ1 = u+ i v, where i =
√
−1. (3.7)

Substituting (3.7) into the formula (3.4), we derive

g11 =
sinh(2 π u)

2 π u
.

Similarly, using the formulas (3.5) and (3.6), we obtain

〈

eλ1x
∣

∣f
〉〈

f
∣

∣eλ1x
〉

=
cosh(2 π u) + cos(2 π v)

2 π2(u2 + v2)
+

+
2− 4 cosh(π u) cos(π v)

2 π2(u2 + v2)
=

(cosh(π u)− cos(π v))2

π2(u2 + v2)
.

As a result we obtain the following expression for the function (3.1):

Φ(λ1) = Φ(u+ i v) = 1− 2 u

u2 + v2
(cosh(π u)− cos(π v))2

π sinh(2 π u)
. (3.8)

Passing to the limit u → 0 in (3.8), we obtain the function

Φ(0 + i v) = 1− (1− cos(π v))2

π2 v2
. (3.9)

The function (3.9) has two absolute minima at v = ±v0, where v0 is a real irrational
number being a solution of the equation

sin(π v)π v + cos(π v) = 1 (3.10)

and such such that 0.1 < v0 < 0.9. Solving (3.10) numerically, we find that

v0 = 0.742019 . . . . (3.11)
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Applying (3.10) and (3.11) to (3.9), we derive

Φmin = Φ(±i v0) = cos2(v0) = 0.4749383 . . . . (3.12)

One can show that two complex numbers λ = ±i v0 are absolute minima of the
function (3.8) as well. The number (3.12) is its minimum value.

It is curious to note that the best one frequency root mean square approximation
for the real-valued function sign(x) is given by a complex function, which is quite
unlike to its Fourier expansion approximation.

4. Two frequencies approximation for the sign function.

The two frequencies case n = 2 subdivides into two subcases λ1 6= λ2 and
λ1 = λ2. The subcase λ1 = λ2 is a cluster case (see [2]). In this case two exponential
functions eλ1x and eλ2x are replaced by two expo-polynomials

φ1(x) = eλ1x, φ2(x) = x eλ1x.

The formula (2.3) is replaced by the formula

gij =
〈

φi

∣

∣φj

〉

.

Similarly, the formula (2.10) is replaced by the formula

Fmin = ‖f‖2 −
n
∑

i=1

n
∑

j=1

gij
〈

φi

∣

∣f
〉 〈

f
∣

∣φj

〉

. (4.1)

The formula (3.1) remains unchanged.
For the beginning we consider the cluster case λ1 = λ2 with λ1 = 0+i v. Applying

the formulas (3.1) and (4.1) to this case, we derive

Φ(0 + i v) = 1− (1− cos(π v))×

× (2 cos(π v)π2 v2 − 3 cos(π v) + 3 + 4 π2 v2 − 6 sin(π v)π v)

π4 v4
.

(4.2)

Unlike (3.9), the function (4.2) has exactly one absolute minimum at v = 0 (i. e. at
the origin of the complex plane λ1 = 0 + i 0 = 0) such that

Φmin = lim
v→ 0

Φ(0 + i v) =
1

4
. (4.3)

.
The general cluster case corresponds to λ1 = λ2 with λ1 = u + i v. In this

case, applying (3.1) and (4.1), we obtain an explicit expression for the function
Φ(λ1) = Φ(u+i v). However, this expression is much more bulky than the expression
(3.8). Analyzing this bulky expression numerically, we find that the function Φ(λ1)
has a unique minimum at the same point λ1 = 0 as the function (4.2).

The next step is to proceed to the non-cluster case. In this case the formulas
(2.10) and (3.1) yield a function of two complex variables Φ(λ1, λ2). The expres-
sion for Φ(λ1, λ2) is very bulky and complicated. Finding an absolute minimum
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numerically for such a function is also a complicated problem. Therefore at present
moment we can only formulate a conjecture that

lim
λ1→ 0
λ2→ 0

Φ(λ1, λ2) = inf
λ1 6=λ2

{Φ(λ1, λ2)} =
1

4
. (4.4)

The formula (4.3) provides a support for our conjecture (4.4).

5. Conclusions.

Once a square integrable function f(x) ∈ L2([−π, +π]) is given, the optimal
values of λ1, . . . , λn for f are called an n-frequencies spectrum of the function
f . The above example of the sign function shows that the n-frequencies spectrum
is not unique. Moreover, it is not stable. The spectral point λ1 = i v0, which is
present in one frequency spectrum, disappears in two frequencies spectrum.
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