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ON SOME HIGHER DEGREE SIGN-DEFINITE

MULTIVARIATE POLYNOMIALS ASSOCIATED

WITH DEFINITE QUADRATIC FORMS.

Ruslan Sharipov

Abstract. Positive and negative quadratic forms are well known and widely used.
They are multivariate homogeneous polynomials of degree two taking positive or
negative values respectively for any values of their arguments not all zero. In the
present paper a certain higher degree polynomial is associated with each quadratic
form such that the form is definite if and only if this polynomial is sign-definite.

1. Introduction.

Quartic and higher order positive polynomials are of growing interest (see [1–5]).
Trivial examples of them are constructed as sums of squares. But in general the
polynomial non-negativity is an NP-hard problem (see [6], [7]). For this reason any
examples of higher degree sign-definite polynomials are worthwhile.

Let a(x1, . . . , xn) be a quadratic form of n variables1. It is given by the formula

a(x1, . . . , xn) =
n
∑

i=1

n
∑

j=1

aij x
i xj . (1.1)

The form (1.1) is associated with its matrix

A =

∥

∥

∥

∥

∥

∥

a11 . . . a1n
...

. . .
...

an1 . . . ann

∥

∥

∥

∥

∥

∥

(1.2)

which is symmetric, i. e. aij = aji. If x
1, . . . , xn are interpreted as components of

a vector in some linear vector space V , then aij are components of a twice covariant
tensor. Under a linear change of variables

xi =
n
∑

j=1

Si
j x̃

j , (1.3)

which is interpreted as a change of basis in V , the matrix (1.2) is transformed as

Ã = S⊤AS. (1.4)
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1 Upper indices for numerating variables in (1.1) are used according to Einstein’s tensorial

notation, see [8].
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Here S is the transition matrix (see [8] or [9]). Its components are used in (1.3).
Let Λ be a skew-symmetric matrix of the same size as the matrix A in (1.2):

Λ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 λ12 . . . λ1n

−λ12 0 . . . λ2n

...
...

. . .
...

−λ1n −λ2n . . . 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.5)

Using the matrices (1.2) and (1.5), we define the polynomial

P (λ12, . . . , λn−1n) = P (Λ) = det(A− Λ). (1.6)

For the definition (1.6) to be coordinate covariant we set

Λ̃ = S⊤ΛS, (1.7)

which is the same transformation rule as (1.4). From (1.4) and (1.7) we derive

P (Λ̃) = (detS)2 P (Λ). (1.8)

The components λ12, . . . , λn−1n of the matrix Λ in (1.6) are interpreted as
independent variables, i. e. as arguments of the polynomial P (Λ). The polynomial
P (Λ) in (1.6) is of degree two in each particular variable λij . However, its total
degree is typically higher than two.

Note that the formula (1.6) is somewhat similar to the formula of the char-
acteristic polynomial of a matrix. Therefore below we shall call P (Λ) the skew-
characteristic polynomial of the form (1.1). Studying some properties of this poly-
nomial is the main goal of the present paper.

2. Proving the positivity.

Theorem 2.1. If a quadratic form with the matrix A is positive, then its associated

skew-characteristic polynomial P (Λ) = det(A − Λ) is positive, i. e. P (Λ) > 0 for

any skew-symmetric matrix Λ.

It is known that the matrix of a positive quadratic form can be brought to the
unit matrix at the expense of linear transformations of the form (1.3), i. e. in a
proper basis (see [9]). Therefore, relying on (1.8), without loss of generality we can
choose A = 1 and consider some examples.

The case n=2. In this case we easily calculate

P (Λ) =

∣

∣

∣

∣

∣

1 −λ12

λ12 1

∣

∣

∣

∣

∣

= 1 + λ 2
12 > 0. (2.1)

The case n=3. This case is similar to the previous one:

P (Λ) =

∣

∣

∣

∣

∣

∣

∣

∣

1 −λ12 −λ13

λ12 1 −λ23

λ13 λ23 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1+ λ 2
12 + λ 2

13 + λ 2
23 > 0. (2.2)
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The case n=4. This case is a little bit more complicated than (2.1) and (2.2):

P (Λ) = 1 + λ 2
12 + λ 2

13 + λ 2
14 + λ 2

23 + λ 2
24 + λ 2

34+

+(λ12 λ34 + λ23 λ14 − λ13 λ24)
2 > 0.

(2.3)

Taking (2.1), (2.2), and (2.3) as a background, we proceed to proving Theorem 2.1.

Proof of Theorem 2.1. Interpreting x1, . . . , xn in (1.1) as the coordinates of a
vector x ∈ V , we can associate a symmetric bilinear form with the matrix A:

a(x,y) =

n
∑

i=1

n
∑

j=1

aij x
i yj. (2.4)

The matrix Λ in (1.5) is not associated with a quadratic form. However, it is
associated with a skew-symmetric bilinear form:

λ(x,y) =
n
∑

i=1

n
∑

j=1

λij x
i yj . (2.5)

Due to (2.4) and (2.5) the matrix A−Λ in (1.6) is associated with the bilinear form

b(x,y) = a(x,y) − λ(x,y), (2.6)

which is neither symmetric nor skew-symmetric.

Assume that the matrix A of the positive quadratic form a(x1, . . . , xn) = a(x,x)
is brought to the unit matrix by choosing some proper basis in V . Then for Λ = 0
in (1.6) we have the following inequality for P (Λ):

P (Λ) = P (0) = det(1) = 1 > 0. (2.7)

Further we shall prove that the polynomial P (Λ) cannot vanish. The proof is by
contradiction. Indeed, if P (Λ) = 0, then det(A−Λ) = 0 and A−Λ is a degenerate
matrix. This means that the form (2.6) has a nonzero kernel1:

Ker b = {x ∈ V : b(x,y) = 0 ∀ y ∈ V } 6= {0}. (2.8)

Let x 6= 0 be a vector belonging to the kernel (2.8). Then

b(x,x) = 0. (2.9)

1 Actually the form b has two kernels — the left kernel and the right kernel, both being nonzero.
We choose the left kernel in (2.8) for the sake of certainty.
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Applying (2.6) to (2.9) and taking into account that λ(x,x) = 0 since the bilinear
form λ in (2.5) is skew-symmetric, we derive

a(x,x) = b(x,x) + λ(x,x) = 0 + 0 = 0.

But the equality a(x,x) = 0 for x 6= 0 contradicts the positivity of the form a. The
contradiction obtained proves that P (Λ) cannot vanish.

Thus we know that the polynomial P (Λ) is a continuous function of its arguments
which is positive for Λ = 0 due to (2.7) and which never vanishes. Therefore P (Λ)
is always positive. Theorem 2.1 is proved. �

3. A criterion of definiteness.

Theorem 3.1. A quadratic form with the matrix A is definite if and only if its

associated skew-characteristic polynomial P (Λ) = det(A− Λ) is sign-definite.

Proof. Assume that the form a is definite. Then it is either positive or negative.
If a is a positive form with the matrix A, then P (Λ) > 0, which follows from
Theorem 2.1. If a is negative, then the form −a is positive. For this form we derive

P
−a(−Λ) = det(−A+ Λ) = (−1)n det(A− Λ) = (−1)n P (Λ). (3.1)

Applying Theorem 2.1 to (3.1), we find that P (Λ) > 0 if the dimension n = dimV

is even and P (Λ) < 0 if n is odd. In both cases P (Λ) is sign-definite. This means
that the necessity is proved.

The proof of the sufficiency is by contradiction. Assume that P (Λ) is sign-definite
but the form a is not definite. Then a is either degenerate or non-degenerate. If a
is degenerate, then detA = 0. Choosing Λ = 0 in (1.6), we get P (0) = det(A) = 0.
The equality P (0) = 0 contradicts both P (Λ) > 0 and P (Λ) < 0.

If a is non-degenerate and indefinite, then its signature is (m,n − m), where
m 6= 0 and n−m 6= 0. In this case by mean of some proper choice of basis in V we
can bring the matrix A to the following diagonal form:

A =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 . . . 1 0 . . . 0

0 . . . 0 −1 . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . −1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (3.2)

Relying on (3.2), we choose the following skew-symmetric matrix Λ:

Λ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 . . . 0 0 . . . 0
...

. . .
...

...
...

0 . . . 0 λmm+1 . . . 0

0 . . . −λmm+1 0 . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (3.3)
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Substituting (3.2) and (3.3) into (1.6) we derive

P (Λ) = (−1)n−m−1 (−1 + λ 2
mm+1). (3.4)

It is easy to see that the polynomial (3.4) is not sign-definite, which is again a
contradiction. Thus, Theorem 3.1 is proved. �

Theorem 3.1 is the main result of the present paper. It can be further used as a
background in deriving definiteness criteria for quartic and higher order forms.
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