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ON POSITIVE BIVARIATE QUARTIC FORMS.

Ruslan Sharipov

Abstract. A bivariate quartic form is a homogeneous bivariate polynomial of degree
four. A criterion of positivity for such a form is known. In the present paper this
criterion is reformulated in terms of pseudotensorial invariants of the form.

1. Introduction.

Let a(x1, x2) be a bivariate quartic form1. It is given by the following formula:

a(x1, x2) = A1111 (x
1)4 + 4A1112 (x

1)3 x2 +

+6A1122 (x
1)2 (x2)2 + 4A1222 x

1 (x2)3 +A2222 (x
2)4.

(1.1)

Interpreting x1 and x2 as coordinates of a vector x in some two-dimensional vector
space V , one can find that A1111, A1112, A1122, A1222, A2222 are components of a
symmetric tensor A of the type (0, 4). Then the formula (1.1) is written as

a(x1, x2) =
2

∑

i1=1

2
∑

i2=1

2
∑

i3=1

2
∑

i4=1

Ai1 i2 i3 i4 x
i1 xi2 xi3 xi4 . (1.2)

The form a(x1, x2) in (1.1) and in (1.2) is called positive if it takes positive values
for all values of its arguments x1 and x2 not both zero. The inequalities

A1111 > 0, A2222 > 0. (1.3)

are necessary conditions for the positivity of the form (1.1). However they are not
sufficient. Necessary and sufficient conditions for the positivity of the form (1.1) do
exist. They are derived from L. E. Dickson’s and E. L. Rees’s results concerning a
univariate quartic polynomial (see [2] and [3]). The main goal of the present paper is
to express these necessary and sufficient conditions in terms of some pseudotensorial
invariants associated with the tensor A whose components are used in (1.1).

2. Dickson’s and Rees’s results.

In [2] L. E. Dickson considers a quartic equation in its reduced form with r 6= 0:

z4 + q z2 + r z + s = 0. (2.1)

Among other things, in his book [2] one can find the following result.

2000 Mathematics Subject Classification. 15A48, 14L24, 11E76.
1 Upper indices for numerating the variables x1 and x

2 in (1.1) are used according to Einstein’s
tensorial notation, see [1].
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Theorem 2.1. The reduced quartic equation (2.1) with real coefficients such that

r 6= 0 has no real roots if and only if its discriminant D4 > 0 and one of the

following two conditions is fulfilled:

1) 4 s > q 2;

2) 4 s < q2 and q > 0.

The discriminant D4 of the reduced quartic equation (2.1) is given by the formula

D4 = 256 s3 − 4 q 3 r 2 − 27 r 4 + 16 q 4 s− 128 q 2 s2 + 144 q s r 2. (2.2)

The case r = 0 was considered by E. L. Rees in [3]. In this case we have.

Theorem 2.2. The reduced quartic equation (2.1) with real coefficients such that

r = 0 has no real roots if and only if one of the following two conditions is fulfilled:

1) 4 s > q 2;

2) 0 < 4 s 6 q2 and q > 0.

The case r = 0 is rather simple. In this case, denoting z2 = y, one can reduce
the equation (2.1) to the following quadratic equation:

y 2 + q y + s = 0. (2.3)

The discriminant of the quadratic equation (2.3) is given by the formula

D2 = q 2 − 4 s. (2.4)

In the case r = 0 the discriminant (2.2) of the quartic equation (2.1) reduces to

D4 = 16 s (q 2 − 4 s)2. (2.5)

Comparing (2.5) with two conditions in Theorem 2.2, we see that the first of them
implies D4 > 0, while the second one implies D4 > 0.

3. Bringing to reduced quartic polynomials.

Note that the reduced quartic polynomial in the left hand side of (2.1) is positive
if and only if the equation (2.1) has no real roots. Therefore bringing the form (1.1)
to a reduced quartic polynomial is a method for testing its positivity.

Since x1 and x2 are not both zero in positivity tests, we consider two cases —
the case x1 6= 0 and the case x2 6= 0. If x2 6= 0, dividing a(x1, x2) by (x2)4 > 0 and
denoting t = x1/x2, we derive the following polynomial from (1.1):

P1(t) = A1111 t
4 + 4A1112 t

3 + 6A1122 t
2 + 4A1222 t+A2222. (3.1)

If x1 6= 0, dividing a(x1, x2) by (x1)4 > 0 and denoting t = x2/x1, we get

P2(t) = A1111 + 4A1112 t+ 6A1122 t
2 + 4A1222 t

3 +A2222 t
4. (3.2)

The discriminants DP 1
and DP 2

of the polynomials (3.1) and (3.2) do coincide.
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They determine the quantity I0 by means of the following formula

I0 =
DP 1

256
=

DP 2

256
. (3.3)

Writing the formula (3.3) explicitly, we get

I0 = 81A1111 (A1122)
4 A2222 − 18 (A1111)

2 (A2222)
2 (A1122)

2 −

− 27 (A1112)
4 (A2222)

2 − 12 (A1111)
2 A1112 A1222 (A2222)

2 −

− 54A1111 (A1122)
3 (A1222)

2 + 108A1111A1112 (A1222)
3 A1122 −

− 64 (A1112)
3 (A1222)

3 + 54A1111 (A2222)
2 A1122 (A1112)

2 +

+(A1111)
3 (A2222)

3 + 54 (A1111)
2 A2222 A1122 (A1222)

2 +

+36A2
1122 (A1112)

2 (A1222)
2 − 54 (A1122)

3 (A1112)
2 A2222 −

− 27 (A1111)
2 (A1222)

4 − 180A1111A1112 A1222 (A1122)
2 A2222 +

+108 (A1112)
3 A1222 A1122 A2222 − 6A1111 (A1112)

2 (A1222)
2 A2222.

(3.4)

We can bring the polynomial (3.1) to the reduced form (2.1) by substituting

t = z −
A1112

A1111
.

As a result we get the following expressions for the coefficients in (2.1):

q1 =
6A1122

A1111
−

6 (A1112)
2

(A1111)2
, (3.5)

r1 =
4A1222

A1111
−

12A1122 A1112

(A1111)2
+

8 (A1112)
3

(A1111)3
, (3.6)

s1 =
A2222

A1111
−

4A1222 A1112

(A1111)2
+

6A1122 (A1112)
2

(A1111)3
−

3 (A1112)
4

(A1111)4
. (3.7)

We can bring the polynomial (3.2) to the reduced form (2.1) by substituting

t = z −
A1222

A2222
.

As a result we get the following expressions for the coefficients in (2.1):

q2 =
6A1122

A2222
−

6 (A1222)
2

(A2222)2
, (3.8)

r2 =
4A1112

A2222
−

12A1122 A1222

(A2222)2
+

8 (A1222)
3

(A2222)3
, (3.9)

s2 =
A1111

A2222
−

4A1222 A1112

(A2222)2
+

6A1122 (A1222)
2

(A2222)3
−

3 (A1222)
4

(A2222)4
. (3.10)
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4. Positivity criteria for a bivariate quartic form.

The coefficient r of the reduced polynomial (2.1) is used as a testing parameter
in Theorems 2.1 and 2.2. Therefore, relying upon (1.3) and using (3.6) and (3.9),
we define the following two testing parameters:

I1 =
(A1111)

3 r1
4

, I2 =
(A2222)

3 r2
4

. (4.1)

Here are the explicit expressions for the parameters (4.1):

I1 = (A1111)
2 A1222 − 3A1111 A1112 A1122 + 2 (A1112)

3, (4.2)

I2 = (A2222)
2 A1112 − 3A2222 A1222 A1122 + 2 (A1222)

3. (4.3)

Another parameter used in Theorems 2.1 and 2.2 is q. Therefore, relying upon
(1.3) and using (3.5) and (3.8), we introduce

I3 =
(A1111)

2 q1
6

, I4 =
(A2222)

2 q2
6

. (4.4)

Here are the explicit expressions for the parameters (4.4):

I3 = A1111 A1122 − (A1112)
2, (4.5)

I4 = A2222 A1122 − (A1222)
2. (4.6)

The third parameter used in Theorems 2.1 and 2.2 is s. Therefore, relying upon
(1.3) and using (3.7) and (3.9), we introduce the following two parameters:

I5 = (A1111)
4 s1, I6 = (A2222)

4 s2. (4.7)

Here are the explicit expressions for the parameters (4.7):

I5 = 6A1111 A1122 (A1112)
2 − 3 (A1112)

4−

− 4A2
1111 A1222 A1112 + (A1111)

3 A2222,
(4.8)

I6 = 6A2222 A1122 (A1222)
2 − 3 (A1222)

4−

− 4A2
2222 A1112 A1222 + (A2222)

3 A1111.
(4.9)

Apart from separate entries of q and s, Theorems 2.1 and 2.2 comprise their
combination (2.4). Applying (3.5), (3.7) and (3.8), (3.10) to (2.4), we derive

D2(1) =
36 (A1122)

2

(A1111)2
−

96A1122 (A1112)
2

(A1111)3
+

+
48 (A1112)

4

(A1111)4
+

16A1222A1112

(A1111)2
−

4A2222

A1111
,

(4.10)
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D2(2) =
36 (A1122)

2

(A2222)2
−

96A1122 (A1222)
2

(A2222)3
+

+
48 (A1222)

4

(A2222)4
+

16A1112 A1222

(A2222)2
−

4A1111

A2222
,

(4.11)

Now, relying upon (1.3) and using (4.10) and (4.11), we introduce

I7 =
(A1111)

4 D2(1)

4
, I8 =

(A2222)
4 D2(2)

4
. (4.12)

Here are the explicit expressions for the parameters (4.12):

I7 = 9 (A1122)
2 (A1111)

2 − 24A1111A1122 (A1112)
2 +

+ 12 (A1112)
4 + 4 (A1111)

2 A1222 A1112 − (A1111)
3 A2222,

(4.13)

I8 = 9 (A2222)
2 (A1122)

2 − 24A2222A1122 (A1222)
2 +

+ 12 (A1222)
4 + 4 (A2222)

2 A1112 A1222 − (A2222)
3 A1111.

(4.14)

Using the parameters (3.4), (4.2), (4.3), (4.5), (4.6), (4.6), (4.8), (4.9), (4.13), and
(4.14), we can formulate the following theorems.

Theorem 4.1. A bivariate quartic form (1.1) is positive if and only if A1111 > 0
and one of the following four conditions for its parameters is fulfilled:

1) I1 6= 0, I0 > 0, I7 6 0;
2) I1 6= 0, I0 > 0, I7 > 0, I3 > 0;
3) I1 = 0, I7 < 0;
4) I1 = 0, I7 > 0, I3 > 0, I5 > 0.

Theorem 4.2. A bivariate quartic form (1.1) is positive if and only if A2222 > 0
and one of the following four conditions for its parameters is fulfilled:

1) I2 6= 0, I0 > 0, I8 6 0;
2) I2 6= 0, I0 > 0, I8 > 0, I4 > 0;
3) I2 = 0, I8 < 0;
4) I2 = 0, I8 > 0, I4 > 0, I6 > 0.

Theorems 4.1 and 4.2 are immediate from Theorems 2.1 and 2.2. Each of them
is a criterion of positivity for the bivariate quartic form (1.1). Hence they are
equivalent to each other. However, deriving one of these theorems from the other
seems to be rather difficult.

5. Pseudotensors and pseudoscalars.

Len V be some n-dimensional linear vector space. Assume that e1, . . . , en and
ẽ1, . . . , ẽn are arbitrary two bases in V . In this context they are usually called
the old basis and the new basis respectively (see [4]). The bases are related to each
other by means of two mutually inverse matrices square S and T :

ẽi =
n
∑

j=1

Sj
i ej , ei =

n
∑

j=1

T j
i ẽj. (5.1)

The matrices S and T are called direct and inverse transition matrices respectively,
while the formulas (5.1) are called direct and inverse transition formulas.
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Definition 5.1. A pseudotensor of the type (r, s) and of the weight m is a geo-
metrical and/or physical object in a linear vector space V presented by an array of

quantities F i1... ir
j1... js

in each basis e1, . . . , en of V and transformed as follows under

any change of basis given by the formulas (5.1):

F i1... ir
j1... js

= (detT )m
n
∑

p1...pr

q1...qs

Si1
p1

. . . Sir
pr

T q1
j1

. . . T qs
js

F̃ p1... pr

q1... qs
.

Pseudotensors of the weight m = 0 are known as tensors (see [5]).

Definition 5.2. Pseudotensors of the type (0, 0) are called pseudoscalars. Pseu-
doscalars of the weight m = 0 are called scalars.

Definition 5.1 can be found in [6], though of cause it was known much prior to
[6] (see [7] for instance). This definition is slightly different from that of [8].

In our case dimV = 2. There is a fundamental pseudotensor d of the type (0, 2)
and of the weight −1 in each two-dimensional linear vector space V . Its components
are given by the same skew-symmetric matrix

dij =

∥

∥

∥

∥

0 1

−1 0

∥

∥

∥

∥

in any basis e1, e2 of V . The dual object for d is given by the same matrix

d ij =

∥

∥

∥

∥

0 1

−1 0

∥

∥

∥

∥

(5.2)

in any basis e1, e2 of V . This dual object is denoted by the same symbol d as the
initial one. It is a pseudotensor of the type (2, 0), its weight is equal to 1.

6. Pseudotensorial invariants.

The tensor A, whose components are used in (1.1) and (1.2), is a true tensor,
i. e. its weight is zero. Combining A with the pseudotensor d defined by (5.2), we
can compose various pseudotensorial objects. Let’s begin with the following one:

Bi1 i2 i3 i4 =
2

∑

k3, k4

j3, j4

Ai1 i2 j2 k1
dk1 j1 Ai3 i4 j1 k2

dk2 j2 (6.1)

The formula (6.1) defines a pseudotensorial object of the type (0, 4) and of the
weight 2. Its components can be calculated explicitly. Two of them are associated
with the parameters I2 and I4 in (4.5) and (4.6):

I3 = −
B1111

2
, I4 = −

B2222

2
. (6.2)

Definition 6.1. Any pseudotensorial object constructed with the use of A and d

is called a pseudotensorial invariant of the quartic form (1.1).
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So, according to Definition 6.1, the pseudotensor B is a pseudotensorial invariant
of the quartic form (1.1). As for I3 and I4 in (6.2), they are not pseudotensorial
invariants. They are just certain components of a pseudotensorial invariant.

The next pseudotensorial invariant Ĉ is constructed with the use of A, B, and
d by means of the following formula:

Ĉi1 i2 i3 i4 i5 i6 =

2
∑

j4,k4

Bi1 i2 i3 j4 d
j4 k4 Ai4 i5 i6 k4

. (6.3)

The formula (6.3) defines a pseudotensorial object of the type (0, 6) and of the
weight 3. Its components can be calculated explicitly. We need only two of them.
They are associated with the parameters I1 and I2 in (4.2) and (4.3):

I1 = Ĉ111111, I2 = −Ĉ222222. (6.4)

In what follows we need the pseudoscalar object β given by the formula

β =

2
∑

i1, i2
j1, j2

Bi1 i2 j1 j2 d
i1 j1 d i2 j2 . (6.5)

The pseudoscalar β in (6.5) can be calculated explicitly:

β = 8A1112 A1222 − 6 (A1122)
2 − 2A1111 A2222. (6.6)

Its weight is equal to 4. Along with β in (6.6), we need the following pseudotensorial
object of the type (0, 8) and of the weight 4:

Di1 i2 i3 i4 i5 i6 i7 i8 =

2
∑

k1,k2,k3,k4

j1,j2,j3,j4

Ai1 i2 j4 k1
dk1 j1Ai3 i4 j1 k2

dk2,j2 ×

×Ai5 i6 j2 k3
dk3 j3 Ai7 i8 j3 k4

dk4 j4.

(6.7)

All of the components of the pseudotensorial object (6.7) can be calculated expli-
citly. We need only two of them:

D11111111 = 2 (A1112)
4 + 2 (A1111)

2 (A1122)
2 − 4A1111 A1122 (A1112)

2,

D22222222 = 2 (A1222)
4 + 2 (A2222)

2 (A1122)
2 − 4A2222 A1122 (A1222)

2.
(6.8)

Comparing (6.8) with (4.8) and (4.9) and using (6.6), we can write

I5 = −
3D11111111

2
−

β (A1111)
2

2
,

I6 = −
3D22222222

2
−

β (A2222)
2

2
.

(6.9)



8 RUSLAN SHARIPOV

The formulas (6.9) mean that the parameters I5 and I6 are not pseudoscalars. They
are just components of the pseudotensorial invariant given by the formula

−
3

2
Di1 i2 i3 i4 i5 i6 i7 i8 −

β

2
Ai1 i2 i3 i4 Ai5 i6 i7 i8 .

The parameters I7 and I8 are similar to I5 and I6. Comparing (6.8) with (4.13)
and (4.14) and taking into account (6.6), we can write

I7 = 6D11111111 +
β (A1111)

2

2
,

I8 = 6D22222222 +
β (A2222)

2

2
.

(6.10)

The formulas (6.10) mean that the parameters I7 and I8 are not pseudoscalars.
They are just components of the pseudotensorial invariant given by the formula

6Di1 i2 i3 i4 i5 i6 i7 i8 +
β

2
Ai1 i2 i3 i4 Ai5 i6 i7 i8 .

7. Tensorial presentation of the discriminant.

Let’s proceed to the parameter I0 in (3.4) which was produced from the dis-
criminants DP 1

and DP 2
in (3.3). This parameter is much more complicated than

the previous ones. In dealing with this parameter we need more sums like (6.1)
and (6.7). It is convenient to associate some graphical images with such sums (see
Fig. 7.1) where each entry of A corresponds to a node, while each entry of d corre-
sponds to a bond. Each index not used in summation is represented as a free bond.
Since the tensor A has four indices, each node in Fig. 7.1 has exactly four bonds
either bound or unbound. For example, the sum (6.1) is presented as dipole with
two inner bonds and two free bonds at each end.

The pseudoscalar β is produced from B according to (6.5). Graphically the sum
(6.5) corresponds to binding free bonds of B. Therefore β is presented as dipole
with four inner bonds in Fig. 7.1. There is an intermediate object

B̂ i1 i2 =

2
∑

k1,j1

B i1 j1 i2 k1 d
k1 j1 . (7.1)

It is presented as a dipole with three inner bonds and with one free bond at each
end. One can calculate the components of B̂ in (7.1) explicitly and find that

B̂ i1 i2 =
β

2
d i1 i2. (7.2)

Due to (7.2) the triple dipole B̂ can be replaced with a bond whenever it enters to
a more complicated diagram.

The sum (6.7) corresponds to the square D with two free bonds at each node.
There is one more square shape in Fig. 7.1. It is denoted through δ. The shapes
with three nodes are presented by triangles C and γ and by the right angle Ĉ. The
right angle Ĉ corresponds to the sum (6.3).
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Below we shall derive formulas associated with each shape in Fig. 7.1. Let’s
begin with the triangular shape C. Like the square D, the triangle C has two free
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bonds at each note. Here is the pseudotensorial object associated with C:

Ci1 i2 i3 i4 i5 i6 =

2
∑

k1,k2,k3

j1,j2,j3

Ai1 i2 j3 k1
dk1 j1Ai3 i4 j1 k2

dk2,j2 Ai5 i6 j2 k3
dk3 j3 . (7.3)

Its type is (0, 6), its weight is 3. The components of the pseudotensor (7.3) can be
calculated explicitly. Using them, we calculate the pseudoscalar γ:

γ =

2
∑

k1,k2,k3

j1,j2,j3

Cj3 k1 j1 k2 j2 k3
dk1 j1 dk2,j2 dk3 j3 . (7.4)

The weight of the pseudoscalar (7.4) is 6. Here is the explicit formula for γ:

γ = 12A1112A1122 A1222 + 6A1111 A1122 A2222 −

− 6 (A1122)
3 − 6 (A1112)

2 A2222 − 6A1111 (A1222)
2.

There is one more triangular shape in Fig. 7.1. It is denoted Č. Here is the
formula for the associated pseudotensorial object:

Či1 i2 i3 i4 =
2

∑

j1,k1

Ci1 j1 i2 k1 i3 i4 d
k1 j1 . (7.5)

The formula (7.5) defines a pseudotensorial object of the type (0, 4) and of the
weight 4. Its components can be calculated explicitly if needed.

The square shape δ in Fig. 7.1 is associated with a pseudoscalar object of the
wight 8. It is calculated by means of the following formula:

δ =
2

∑

k1,k2,k3,k4

j1,j2,j3,j4

Dj4 k1 j1 k2 j2 k3 j3 k4
dk1 j1 dk2,j2 dk3 j3 dk4 j4 . (7.6)

It turns our that δ from (7.6) is expressed through β from (6.6):

δ =
β 2

2
.
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Pentagonal shapes cannot be associated with the parameter I0. Therefore we
proceed to hexagonal ones. The shape E in Fig. 7.1 is presented by the formula

Ei1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ai1 i2 j6 k1
dk1 j1 ×

×Ai3 i4 j1 k2
dk2,j2Ai5 i6 j2 k3

dk3 j3 Ai7 i8 j3 k4
dk4 j4 ×

×Ai9 i10 j4 k5
dk5,j5Ai11 i12 j5 k6

dk6 j6 .

(7.7)

It defines a pseudotensorial object of the type (0, 12) and the weight 6. Using (7.7),
one can calculate the pseudoscalar ε0 associated with the double hexagon:

ε0 =
2

∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ej6 k1 j1 k2 j2 k3 j3 k4, j4 k5 j5 k6
dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 .

(7.8)

Actually, using (7.7) is rather time consuming. For this reason, instead of (7.8), we
use another formula for calculating ε0:

ε0 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Bj5 j6 k1 k2
Bj1 j2 k3 k4 Bj3,j4,k5,k6

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 .

(7.9)

The quantity (7.9) is a pseudoscalar object of the weight 12. Here is an explicit
expression for this pseudoscalar object:

ε0 = 128 (A1112)
3 (A1222)

3 − 30 (A1111)
2 (A2222)

2 (A1122)
2 −

− 30A1111 (A1122)
4 A2222 − 24A1111 (A1122)

3 (A1222)
2 −

− 12 (A1112)
4 (A2222)

2 + 96A1111 A1112 A1222 (A1122)
2 A2222 +

+48 (A1112)
3 A1222 A1122 A2222 + 24 (A1111)

2 A1112 A1222 (A2222)
2 +

+48A1111A1112 (A1222)
3 A1122 + 24A1111 A

2
2222 A1122 (A1112)

2 +

+24A2
1111A2222 A1122 (A1222)

2 − 336 (A1122)
2 (A1112)

2 (A1222)
2 −

−24 (A1122)
3 (A1112)

2 A2222 − 120A1111 (A1112)
2 (A1222)

2 A2222 −

−12 (A1111)
2 (A1222)

4 − 2 (A1111)
3 (A2222)

3 − 66 (A1122)
6 +

+264A1112A1222 (A1122)
4.

(7.10)

Formulas similar to (7.9) are available for the quantities from ε1 through ε10:

ε1 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Cj1 j6 j2 j3 j4 j5 Ck1 k2 k3 k4 k5 k6
dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.11)
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ε2 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j6 j3 j2 j4 j5 Ck1 k2 k3 k4 k5 k6
dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.12)

ε3 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j2 j3 j4 j5 k1
Ĉk6 k5 k4 j6 k3 k2

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.13)

ε4 =
2

∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1,j2,j3,j4,j5,k1
Ĉk4,k6,k3,j6,k2,k5

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.14)

ε5 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j3 j5 j6 j4 k1
Ĉk3 k4 j2 k5 k6 k2

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.15)

ε6 =
2

∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj3,j4,j1,j5,j6,k1
Ĉk3,k5,j2,k4,k6,k2

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.16)

ε7 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j6 j3 j4 j5 k1
Ĉj2 k6 k4 k3 k5 k2

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.17)

ε8 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j3 j4 j5 j6 k1
Ĉj2 k3 k4 k5 k6 k2

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.18)

ε9 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j3 j4 j5 j6 k1
Ĉk3 k4 j2 k5 k6 k2

dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 ,

(7.19)

ε10 =

2
∑

k1,k2,k3,k4,k5,k6

j1,j2,j3,j4,j5,j6

Ĉj1 j2 j3 j4 j5 j6 Ĉk1 k6 k3 k2 k4 k5
dk1 j1 ×

× dk2,j2 dk3 j3 dk4 j4 dk5 j5 dk6 j6 .

(7.20)

It turns out that ε2 in (7.12) vanishes, i. ewe have the equality

ε2 = 0.
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Using (7.11), (7.13), (7.14), (7.15), (7.16),(7.17), (7.18), (7.19), (7.20), one can
derive explicit formulas for ε1 and for the quantities from ε3 through ε10. For
instance, in the case of the quantity ε5 we have

ε5 = 12A1111 (A1122)
4 A2222 − 6 (A1111)

2 (A2222)
2 (A1122)

2 −

− 12A1111 (A1122)
3 (A1222)

2 − 6 (A1112)
4 (A2222)

2 −

− 24A1111A1112 A1222 (A1122)
2 A2222 + 24 (A1112)

3 A1222 A1122 A2222 +

+24A1111A1112 (A1222)
3 A1122 + 12A1111 (A2222)

2 A1122 A1112)
2 +

+12A1111)
2 A2222 A1122 (A1222)

2 − 24 (A1122)
2 (A1112)

2 (A1222)
2 −

− 12 (A1122)
3 (A1112)

2 A2222 − 12A1111 (A1112)
2 (A1222)

2 A2222 −

− 6 (A1111)
2 (A1222)

4 − 6 (A1122)
6 + 24A1112A1222 (A1122)

4.

(7.21)

Fortunately there is no need to calculate the rest of the quantities ε1, . . . , ε10.
They are expressed as linear combinations of (7.10) and (7.21):

ε1 = ε5, ε3 = 2 ε5,

ε4 = −ε5, ε6 = −ε0 + 3 ε5,
(7.22)

ε7 = ε5, ε8 = −2 ε5,

ε9 = 2 ε5, ε10 = −ε0 + 4 ε5.

There is a formula similar to (7.22) for the parameter I0:

I0 = −
1

2
ε0 +

11

2
ε5. (7.23)

It turns out that ε0 and ε5 are expressed through β 3 and γ 2:

ε0 =
1

4
β 3 −

1

3
γ 2, ε5 = −

1

6
γ 2. (7.24)

Substituting (7.24) into (7.23), we derive

I0 = −
1

8
β 3 −

3

4
γ 2, (7.25)

where β and γ are given by (6.5) and (7.4). The equality (7.25) shows that I0 is
a pseudoscalar object of the weight 12 unlike I1, I2, I3, I4, I5, I6, I7, I8, which
are just certain components of pseudotensorial objects. The equality (7.25) is not
surprising since β and γ are two basic invariants of a quartic form (see [9]).

8. Conclusions.

The main result of the present paper consists in revealing the tensorial nature
of the parameters I1, I2, I3, I4, I5, I6, I7, I8 in Dickson’s and Rees’s positivity test
for quartic forms. This result is expressed by the formulas (6.2), (6.4), (6.9), and
(6.10). It can be further generalized to trivariate quartic forms and to quartic forms
with greater number of variables. As for the tensorial nature of the parameter I0
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expressed through the formulas (7.25), (6.5) and (7.4), it is a classical result known
probably since Issai Schur, F. Franklin, J. J. Sylvester, and David Hilbert.
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