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MULTIPLE DISCRIMINANTS AND CRITICAL

VALUES OF A MULTIVARIATE POLYNOMIAL.

Ruslan Sharipov

Abstract. A critical value of a function is the value of this function at one of its crit-
ical points. Each critical point of a differentiable multivariate function is described
by the equations which consist in equating to zero all of its partial derivatives. How-
ever, in general case there is no equation for the corresponding critical value. The
case of polynomials is different. In the present paper an equation for critical values
of a polynomial is derived.

1. Introduction.

Let f(x1, . . . , xn) be a smooth real valued multivariate function in Rn or in some
open domain Ω ⊂ Rn. Critical points of the function f are determined by solving
the following system of equations with respect to the variables x1, . . . , xn:



















∂f(x1, . . . , xn)

∂x1

= 0,

. . . . . . . . . . . . . .

∂f(x1, . . . , xn)

∂xn

= 0.

(1.1)

They can be maxima, minima, saddle points, and other types of critical points.
Let v be the value of f(x1, . . . , xn) at one of its critical points given by the

equations (1.1). Then we can extend the system of equations (1.1) as follows:































∂f(x1, . . . , xn)

∂x1

= 0,

. . . . . . . . . . . . . .

∂f(x1, . . . , xn)

∂xn

= 0,

f(x1, . . . , xn)− v = 0.

(1.2)

The parameter v in (1.2) is treated as a new variable independent of x1 . . . , xn,
i. e. (1.2) is a system of n + 1 equations for n + 1 variables. Theoretically, one
can eliminate the variables x1 . . . , xn from the system (1.2) thus producing one
equation for one variable v, which is the critical value of f :

F (v) = 0. (1.3)
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In practice it is rather difficult to derive such an equation. In the present paper
we derive the equation of the form (1.3) for the case where f(x1, . . . , xn) is a
multivariate polynomial. For the sake of simplicity, from now on we treat x1 . . . , xn

as complex variables so that they constitute a point in Cn.

2. The case of a univariate polynomial.

Let’s begin with the case where n = 1. Denoting x1 = x for the sake of simplicity,
assume that f(x) is a univariate polynomial of n-th degree:

f(x) = a0 x
n + a1 x

n−1 + . . .+ an−1 x+ an.

Then p(x) = f(x)− v is also a univariate polynomial of n-th degree:

p(x) = a0 x
n + a1 x

n−1 + . . .+ an−1 x+ (an − v). (2.1)

Using p(x), in this case we can write the system of equations (1.2) as follows:

{

p ′(x) = 0,

p(x) = 0.

It is known that a univariate polynomial p(x) vanishes along with its first derivative
p ′(x) at some point x ∈ C if and only its discriminant is zero (see [1]):

Dp = 0. (2.2)

The coefficients of the polynomial p(x) in (2.1) depend on v. Therefore the dis-
criminant Dp in (2.2) depends on v. And we write (2.2) as

Dp(v) = 0. (2.3)

The equation (2.3) is a required equation of the form (1.3).

Theorem 2.1. A complex number v is a critical value of a univariate polynomial

f(x) if and only if it is a root of the equation (2.3), where Dp(v) is the discriminant

of the polynomial p(x) = f(x)− v.

Theorem 2.1 follows immediately from the above mentioned basic property of
the discriminant of a univariate polynomial.

3. The case of a multivariate polynomial.

This case is somewhat similar to the previous one. Here we can replace the
multivariate polynomial f(x1, . . . , xn) with the polynomial

p(x1, . . . , xn) = f(x1, . . . , xn)− v. (3.1)

Due to (3.1) we can write the equations (1.2) as follows:































∂p(x1, . . . , xn)

∂x1

= 0,

. . . . . . . . . . . . . .

∂p(x1, . . . , xn)

∂xn

= 0,

p(x1, . . . , xn) = 0.

(3.2)
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The concept of the discriminant of a multivariate polynomial is not commonly
known. Its definition can be found in [2] (see also [3] and [4]).

Definition 3.1. The discriminant Dp of a multivariate polynomial p(x1, . . . , xn)
is a polynomial function of the coefficients of p such that its own coefficients are
integer, such that it is irreducible over Z, and such that Dp = 0 if and only if the
system of equations (3.2) has an least one solution in complex numbers x1, . . . , xn.

As it was said in [2] with the reference to [5], discriminants of multivariate
polynomials were first considered by G. Boole. The reference [5] is taken from [2]
“as is”. It looks quite uncertain, since no information on publishers is provided (see
more detailed historical research in [6] and [7]).

The coefficients of the polynomial p(x1, . . . , xn) in (3.1) depend on v. Therefore
the discriminant Dp depends on v. Hence we can write the equation

Dp(v) = 0. (3.3)

The equation (3.3) is of the form (1.3). It solves our problem of reducing (1.2) to
a single equation for v through the following theorem which is immediate from the
above Definition 3.1.

Theorem 3.1. A complex number v is a critical value of a multivariate polynomial

f(x1, . . . , xn) if and only if it is a root of the equation (3.3), where Dp(v) is the

discriminant of the polynomial (3.1).

However, the matter is that there is no simple formula for the discriminant Dp

in the case of a multivariate polynomial p. For this reason below we consider a
different approach to deriving an equation of the form (1.3) from (1.2).

4. Critical points of discriminants.

Let p(x, y) be a univariate polynomial of n-th degree in x, i. e.

p(x, y) = an(y)x
n + an−1(y)x

n−1 + . . .+ a1(y)x+ a0(y), (4.1)

whose coefficients are smooth function of a complex variable y ∈ C. Assume that
at some point (x0, y0) ∈ C2, where an(y0) 6= 0, the following equations are fulfilled:

p ′

x(x0, y0) = 0, p ′

y(x0, y0) = 0, p(x0, y0) = 0. (4.2)

Theorem 4.1. If p is a univariate polynomial of the form (4.1) whose coefficients

are smooth function of a complex variable y and if the equations (4.2) are fulfilled

at some point (x0, y0) ∈ C
2, where an(y0) 6= 0, then they imply the equations

D ′(y0) = 0, D(y0) = 0 (4.3)

for the discriminant D of p which are fulfilled at the point y0 ∈ C, where y0 is the

second coordinate of the corresponding point (x0, y0) ∈ C2.

Since an(y0) 6= 0 in Theorem 4.1, we can divide the polynomial (4.1) by an(y)
and proceed to the following monic polynomial:

p̃(x, y) = xn +
an−1(y)

an(y)
xn−1 + . . .+

a1(y)

an(y)
x+

a0(y)

an(y)
. (4.4)
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The discriminants of the polynomials (4.1) and (4.4) are related as follows:

Dp(y) = (an(y))
2n−2 Dp̃(y). (4.5)

Relying on (4.5), we can write the monic polynomial

p(x, y) = xn + an−1(y)x
n−1 + . . .+ a1(y)x+ a0(y) (4.6)

and then reformulate Theorem 4.1 in the following way.

Theorem 4.2. If p is a monic univariate polynomial of the form (4.6) whose

coefficients are smooth function of a complex variable y and if the equations (4.2)
are fulfilled at some point (x0, y0) ∈ C2, then they imply the equations (4.3) for the

discriminant D of p which are fulfilled at the point y0 ∈ C, where y0 is the second

coordinate of the corresponding point (x0, y0) ∈ C
2.

Theorems 4.1 and 4.2 are equivalent to each other due to the relationship (4.5).

5. Proof of Theorem 4.2 in the case of a quadratic polynomial.

Assume that n = 2 in (4.6). Then p(x, y) is a quadratic polynomial:

p(x, y) = x2 + a1(y)x+ a0(y). (5.1)

One can easily calculate the partial derivatives of p(x, y):

p ′

x(x, y) = 2 x+ a1(y), p ′

y(x, y) = a ′

1
(y)x+ a ′

0
(y). (5.2)

Substituting (5.1) and (5.2) into (4.2), we derive a system of three equations:











2 x0 + a1(y0) = 0,

a ′

1(y0)x0 + a ′

0(y0) = 0,

(x0)
2 + a1(y0)x0 + a0(y0) = 0.

(5.3)

The discriminant of the polynomial (5.1) is calculated as follows:

D(y) = (a1(y))
2 − 4 a0(y). (5.4)

Its derivative D ′(y) is also easily calculated:

D ′(y) = 2 a1(y) a
′

1
(y)− 4 a ′

0
(y). (5.5)

Note that the first equation in (5.3) can be resolved with respect to x0:

x0 = −
a1(y0)

2
. (5.6)

Substituting (5.6) into the third equation (5.3) we derive

−
(a1(y0))

2

4
+ a0(y0) = 0. (5.7)



MULTIPLE DISCRIMINANTS AND CRITICAL VALUES . . . 5

Comparing (5.7) with (5.4), we see that (5.3) implies

D(y0) = 0. (5.8)

Then we substitute (5.6) into the second equation (5.3). As a result we get

−
a1(y0) a

′

1
(y0)

2
+ a ′

0(y0) = 0. (5.9)

Comparing (5.9) with (5.5), we see that (5.3) implies

D ′(y0) = 0. (5.10)

The rest is to note that (5.10) and (5.8) coincide with (4.3) and conclude that (4.2)
implies (4.3) in the case of the polynomial (5.1). Thus, Theorem 4.2 is proved for
the case of quadratic polynomials.

6. Proof of Theorem 4.2 in the case of a double root polynomial.

If y = y0 is fixed, the equations (4.2) mean that the polynomial p vanishes along
with its derivative p ′

x at the point x = x0, i. e. it has a multiple root at this point.
The case of a double root is the most simple in this situation.

Let x1 . . . , xn be roots of the polynomial (4.6). They depend on y, i. e.

xi = xi(y), i = 1, . . . , n. (6.1)

It is known that roots of a univariate polynomial are continuous functions of its
coefficients (see [8]). Hence in our case the roots (6.1) are continuous functions of
y. Two of them tend to x0 as y → y0. Without loss of generality we can set

x1(y) → x0 and x2(y) → x0 as y → y0. (6.2)

Assume that the roots x3(y0), . . . , xn(y0) are distinct and different from the double
root x1(y0) = x2(y0) = x0. Under this assumption the roots

x3(y), . . . , xn(y) (6.3)

are smooth functions of y in some neighborhood of the point y = y0 (see [8]). Unlike
them the roots x1(y) and x2(y) in (6.2) are not necessarily smooth, though they
are continuous functions of y in this neighborhood of the point y = y0.

Using the roots (6.2) and (6.3), we define two polynomials which are two com-
plementary factors of the initial polynomial p(x, y) in (4.6):

q(x, y) =
2
∏

i=1

(x− xi(y)), r(x, y) =
n
∏

i=3

(x − xi(y)). (6.4)

Indeed, from (6.4) we easily derive the equality

p(x, y) = q(x, y) r(x, y). (6.5)
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The coefficients of the polynomial r(x, y) in (6.4) are smooth functions of y since
they are elementary symmetric functions of the smooth roots (6.3) (see [1]). The
polynomial q(x, y) in (6.4) is quadratic:

q(x, y) = x2 + β1(y)x+ β0(y). (6.6)

Its coefficients are also smooth functions of y since due to (6.5) the polynomial (6.6)
can be produced by means of the polynomial long division algorithm (see [9]) with
the monic polynomial r(x, y) as a divisor:

q(x, y) = p(x, y)÷ r(x, y).

Let’s recall that the roots x3(y0), . . . , xn(y0) are different from the double root
x0. Therefore from (6.4) we derive the inequality

r(x0, y0) =
n
∏

i=3

(x0 − xi(y0)) 6= 0. (6.7)

Similarly, applying (6.2) to q(x, y) in (6.4), we derive the equality

q(x0, y0) = 0. (6.8)

Differentiating the equality (6.5), we find that

p ′

x(x0, y0) = q ′

x(x0, y0) r(x0, y0) + q(x0, y0) r
′

x(x0, y0),

p ′

y(x0, y0) = q ′

y(x0, y0) r(x0, y0) + q(x0, y0) r
′

y(x0, y0).
(6.9)

Now, applying (6.8) to (6.9), we obtain the equalities

p ′

x(x0, y0) = q ′

x(x0, y0) r(x0, y0),

p ′

y(x0, y0) = q ′

y(x0, y0) r(x0, y0).
(6.10)

If the equations (4.2) are fulfilled, then, using (6.7), from (6.10) we derive

q ′

x(x0, y0) = 0, q ′

y(x0, y0) = 0. (6.11)

The equalities (6.11) combined with (6.8) mean that the equations (4.2) for p,
once they are fulfilled, imply similar equations

q ′

x(x0, y0) = 0, q ′

y(x0, y0) = 0, q(x0, y0) = 0 (6.12)

for the quadratic polynomial (6.6) whose coefficients are smooth functions of y.
Theorem 4.2 is already proved for quadratic polynomials. Therefore, applying this
theorem to q(x, y) and (6.12), we derive the equalities

D ′

q(y0) = 0, Dq(y0) = 0, (6.13)

where Dq(y) is the discriminant of the polynomial q(x, y) in (6.6).
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Let’s proceed to the discriminant D(y) of the polynomial p(x, y) in (4.6). In
terms of its roots the discriminant D(y) is given by the formula

D(y) =

n
∏

i<j

(xi(y)− xj(y))
2 (6.14)

(see [1]). If we denote through Dr(y) the discriminant of the polynomial r(x, y) in
(6.4), then we can factorize the discriminant (6.14) as follows:

D(y) = Dq(y)Dr(y)

2
∏

i=1

n
∏

j=3

(xi(y)− xj(y))
2. (6.15)

Taking into account the formula for q(x, y) in (6.4), we can transform (6.15) as

D(y) = Dq(y)Dr(y)

( n
∏

j=3

q(xj(y), y)

)2

. (6.16)

Relying on (6.16), lets introduce the following notation:

α(y) = Dr(y)

( n
∏

j=3

q(xj(y), y)

)2

. (6.17)

The function α(y) in (6.17) is a smooth function of y since the coefficients of the
polynomial q(x, y) in (6.6) and the roots x3(y), . . . , xn(y) of the polynomial r(x, y)
in (6.3) are smooth functions of y. Applying (6.17) to (6.16), we get

D(y) = Dq(y)α(y). (6.18)

Both multiplicands Dq(y) and α(y) in (6.18) are smooth functions of y. Therefore,
differentiating (6.18), we derive the following formula:

D ′(y0) = D ′

q(y0)α(y0) +Dq(y0)α
′(y0). (6.19)

The rest is to apply (6.13) to (6.18) and (6.19) and derive (4.3). Thus we have
proved that (4.2) implies (4.3) in our present case. Theorem 4.2 is proved in the
case of a polynomial (4.6) with exactly one double root and the other simple roots.

7. Proof of Theorem 4.2 in general case.

Note that the polynomial p(x, y) in (4.6) depends on y through its coefficients.
Therefore the derivative D ′(y) of its discriminant is calculated is follows:

D ′(y) =

n−1
∑

i=0

∂D

∂ai
a ′

i(y). (7.1)

Let’s denote δp(x, y) = p ′

y(x, y). Then, differentiating (4.6), we get

δp(x, y) = a ′

n−1
(y)xn−1 + . . .+ a ′

1
(y)x+ a ′

0
(y). (7.2)
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Let’s denote ai = a ′

i(y0), bi = a ′

i(y0) and δD = D ′(y0). Then, substituting y = y0
into (4.6), (7.2) and (7.1), we obtain two polynomials

p(x) = xn + an−1 x
n−1 + . . .+ a1 x+ a0,

δp(x) = bn−1 x
n−1 + . . .+ b1 x+ b0

(7.3)

with purely numeric coefficients and the purely numeric quantity

δD =

n−1
∑

i=0

∂D

∂ai
bi (7.4)

associated with the polynomials (7.3). The following definition is terminological.
It is designed for the sake of beauty.

Definition 7.1. The polynomial δp(x) in (7.3) is called a first variation of the
polynomial p(x), while the numeric quantity (7.4) is called the first variation of the
discriminant D of p associated with δp(x).

It turns out that the functional nature of the coefficients of p(x, y) in (4.6) is
inessential in Theorem 4.2. This theorem can be reformulated as follows.

Theorem 7.1. If a monic polynomial p(x) in (7.3) has a multiple root of mul-

tiplicity m > 2 and if it shares this root with its first variation δp(x), then the

discriminant D of p(x) vanishes along with its first variation δD in (7.4).

Theorem 7.1 is equivalent to Theorem 4.2. The equivalence can be established
using the linear functions ai(y) = ai+bi (y−y0) in (4.6). The result of the previous
section means that we have already proved Theorem 7.1 for any monic polynomial
p(x) with exactly one double root and the other simple roots.

Let p(x) be a monic polynomial with at least one multiple root x0. Then it can
be produced as a limit of some sequence of monic polynomials ps(x) with exactly
one double root x = x0 and the other simple roots. Assume that p(x) shares its
multiple root x = x0 with its first variation δp(x) in (7.3). Then

δp(x0) = 0. (7.5)

The equality (7.5) is written as a linear relationships with respect to the coefficients
b0, . . . , bn−1 of the polynomial δp(x) in (7.3):

xn−1

0
bn−1 + . . .+ x0 b1 + b0 = 0. (7.6)

The coefficients of the linear combination (7.6) depend only on the root x0, which
is common for p(x) and for any polynomial in the sequence ps(x). This means that
p(x) and the polynomials ps(x) share the same first variation δp(x) obeying the
relationship (7.5). This first variation δp(x) combined with each ps(x) according
to (7.4) produces a numeric sequence δDs. The discriminant D and its partial
derivatives in (7.4) are smooth functions of a0, . . . , an−1. Therefore we have

δD = lim
s→∞

δDs. (7.7)

The rest is to apply Theorem 7.1 to each ps(x) combined with δp(x). This yields
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δDs = 0. Substituting δDs = 0 into (7.7), we derive the required result δD = 0.
Thus, Theorem 7.1 is proved in its full generality. The same is true for Theorems 4.2
and 4.1, which are equivalent to Theorem 7.1.

8. Application to critical values.

Having been equipped with Theorem 4.1, now we return to our initial problem
of deriving an equation of the form (1.3) from the equations (1.2) in the case
of a multivariate polynomial f(x1, . . . , xn). Passing from f(x1, . . . , xn) to the
polynomial p(x1, . . . , xn) in (3.1), we treat p(x1, . . . , xn) as a univariate polynomial
with respect to the variable x = xn and treat the other variables x1, . . . , xn−1 and
v as parameters. Then we calculate the univariate discriminantD of the polynomial
p(x1, . . . , xn) with respect to the last variable x = xn:

p̃(x1, . . . , xn−1) = D(xn, p(x1, . . . , xn)). (8.1)

The univariate discriminant D in (8.1) acts as a nonlinear operator sending the n-
variate polynomial p(x1, . . . , xn) to the (n−1)-variate polynomial p̃(x1, . . . , xn−1).
Setting y = xi and applying Theorem 4.1 for each i = 1, . . . , n− 1, we derive the
following system of equations from the equations (3.2):































∂p̃(x1, . . . , xn−1)

∂x1

= 0,

. . . . . . . . . . . . . .
∂p̃(x1, . . . , xn−1)

∂xn−1

= 0,

p̃(x1, . . . , xn−1) = 0.

(8.2)

The structure of the equations (8.2) is the same as the structure of the equations
(3.2). Therefore we can apply the operator (8.1) repeatedly:

DDp = D(x1, D(x2, . . . , D(xn, p(x1, . . . , xn)) . . . )). (8.3)

Definition 8.1. The numeric quantity DDp introduced through the formula (8.3)
is called the multiple discriminant of a multivariate polynomial p(x1, . . . , xn).

Generally speaking, the multiple discriminant DDp is different from the discrim-
inant Dp of a multivariate polynomial introduced in Definition 3.1. Unlike Dp, the
formula (8.3) provides a clear algorithm for calculating DDp.

The coefficients of the polynomial p(x1, . . . , xn) in (3.1) depend on v. Therefore
the multiple discriminant DDp depends on v. Hence we can write the equation

DDp(v) = 0, (8.4)

where DDp(v) = D(x1, D(x2, . . . , D(xn, f(x1, . . . , xn)− v)) . . . )).

Theorem 8.1. If a complex number v is a critical value of a multivariate polyno-

mial f(x1, . . . , xn), then it is a root of the equation (8.4).

Theorem 8.1 is proved by applying Theorem 4.1 repeatedly. Theorem 8.1 is
similar to Theorem 3.1, but it is somewhat weaker, i. e. each critical value of a
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multivariate polynomial f(x1, . . . , xn) is a root of the equation (8.4), but not each
root of the equation (8.4) is a critical value of f(x1, . . . , xn).

9. Conclusions.

Theorem 8.1 along with the equation (8.4) and the formula (8.3) constitutes
the main result of the present paper. It can be applied in testing positivity of
multivariate quartic forms and forms of higher degrees.
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