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COMPARISON OF TWO CLASSIFICATIONS

OF A CLASS OF ODE’S IN THE FIRST

CASE OF INTERMEDIATE DEGENERATION.

Ruslan Sharipov

Abstract. Two classifications of second order ODE’s cubic with respect to the first
order derivative are compared in the first case of intermediate degeneration. The
correspondence of vectorial, pseudovectorial, scalar, and pseudoscalar invariants of
the equations in this case is established.

1. Introduction.

Since the epoch of classical papers (see [1] and [2]) it is known that the class of
second order differential equations cubic with respect to the first order derivative

y′′ = P (x, y) + 3Q(x, y) y′ + 3R(x, y) (y′)2 + S(x, y) (y′)3 (1.1)

is closed with respect to transformations of the form

{

x̃ = x̃(x, y),

ỹ = ỹ(x, y).
(1.2)

About 19 years ago in [3] and [4] the equations (1.1) were classified using their scalar
invariants. They were subdivided into nine subclasses closed with respect to
transformations of the form (1.2). The richest class comprising almost all equations
of the form (1.1) consists of the equations of general position. The smallest
class is composed by the equations of maximal degeneration. The rest of the
equations (1.1) are distributed among seven subclasses composed by the equations
of intermediate degeneration.

Recently in 2013 Yu. Yu. Bagderina in [5] presented her own classification of the
equations (1.1) again subdividing them into nine subclasses closed with respect
to transformations of the form (1.2). She uses Sophus Lie’s method of infinitesimal
transformations adapted to equations of the form (1.1) by N. H. Ibragimov in [6].

In [5] Yu. Yu. Bagderina does not mention the previously existing classification
from [3] and [4]. She cites the paper [4] only as a source of invariants and for
criticism of its method. The present paper is the second one in a series of papers
intended to examine the results of [5] and compare them with the prior results from
[3, 4] and [7]. In the previous paper [8] it was shown that items 1 and 9 in Bagde-
rina’s classification Theorem 2 in [5] do coincide with the case of general position
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and the case of maximal degeneration respectively from the previously existing
classification in [3] and [4]. It was also revealed that in the case of general posi-
tion most structures and most formulas from Bagderina’s paper [5] do coincide or
are very closely related to those in [7], though they are given in different notations.

In the present paper we consider item 2 of Bagderina’s classification Theorem in
[5] and compare it with the first case of intermediate degeneration in [3] and
[4]. Then we study the structures and formulas from item 2 of Thheirem 2 in [5]
and establish their correspondence to the structures and formulas of the previously
existing classification in [3] and [4].

2. Some notations and definitions.

Transformations of the form (1.2) are called point transformations. They are
assumed to be locally invertible. The inverse transformations for them are also
point transformations. They are written as follows:

{

x = x̃(x̃, ỹ),

y = ỹ(x̃, ỹ).
(2.1)

According to [3, 4] and [7], we use dot index notations for partial derivatives, e. g.
having two functions f(x, y) and g(x̃, ỹ) we write

fp.q =
∂p+qf

∂xp ∂yq
, gp.q =

∂p+qg

∂x̃p ∂ỹq
. (2.2)

In terms of the notations (2.2) the Jacoby matrices of the direct and inverse point
transformations (1.2) and (2.1) are written as follows:

S =

∥

∥

∥

∥

x1.0 x0.1

y1.0 y0.1

∥

∥

∥

∥

, T =

∥

∥

∥

∥

x̃1.0 x̃0.1

ỹ1.0 ỹ0.1

∥

∥

∥

∥

. (2.3)

In geometry the transformations (1.2) and (2.1) are interpreted as changes of local
curvilinear coordinates on the plane R2 or on some two-dimensional manifold. Their
Jacoby matrices are called the direct and inverse transition matrices (see [9]).

Tensorial and pseudotensorial fields in local coordinates are presented as arrays
of functions whose arguments are x, y or x̃, ỹ respectively. These arrays of functions
are called their components. They obey some definite transformation rules.

Definition 2.1. A pseudotensorial field of the type (r, s) and weight m is an array

of functions F i1... ir
j1... js

which under the change of coordinates (1.2) transforms as

F i1... ir
j1... js

= (detT )m
∑

p1...pr

q1...qs

Si1
p1

. . . Sir
pr

T q1
j1

. . . T qs
js

F̃ p1... pr

q1... qs . (2.4)

Tensorial fields are those pseudotensorial fields whose weight m in (2.4) is zero.
The prefix “pseudo” always indicates the nonzero weight m 6= 0.

Tensorial and pseudotensorial fields of the type (1, 0) are called vectorial and
pseudovectorial fields. Tensorial and pseudotensorial fields of the type (0, 1) are
called covectorial and pseudocovectorial fields. And finally, scalar and pseudoscalar
fields are those fields whose type is (0, 0).
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Definition 2.2. Tensorial and pseudotensorial fields whose components are ex-
pressed through y′, through the coefficients P , Q, R, S of the equation (1.1), and
through their partial derivatives are called tensorial and pseudotensorial invariants
of this equation respectively.

Remark. Typically, in differential geometry components of tensorial and pseu-
dotensorial fields depend on a point of the base manifold only, i. e. on x and y or on
x̃ and ỹ in our particular case. If the dependence of other parameters is included,
this makes an extension of the concept. So, in Definition 2.2 we have extended
tensorial and pseudotensorial fields.

3. Some basic structures.

In [5] Yu. Yu. Bagderina introduces a long list of special notations. In order to
distinguish her notations from those in [3, 4] and [7] we use the upper mark «Bgd»
for her notations. The first order expressions introduced in [5] are

αBgd

0 = Q1.0 − P0.1 + 2P R− 2Q2,

αBgd

1 = R1.0 −Q0.1 + P S −QR,

αBgd

2 = S1.0 −R0.1 + 2QS − 2R2.

(3.1)

The order of an expression is determined by the highest order of partial derivatives
of P , Q, R, S in it. As it was noted in [8], Bagderina’s alpha quantities (3.1)
coincide with the components of the symmetric two-dimensional array Ω from [7]:

αBgd

0 = Ω11, αBgd

1 = Ω12 = Ω21, αBgd

2 = Ω22. (3.2)

The quantities Ωij in (3.2) constitute nether a tensorial invariant nor a pseudotensor
invariant. However, their derivatives are used in constructing both tensorial and
pseudotensor invariants.

The second order expressions are given by the formulas (2.2) in [5]:

β Bgd

1 = ∂xα
Bgd

1 − ∂yα
Bgd

0 +RαBgd

0 − 2QαBgd

1 + P αBgd

2 ,

β Bgd

2 = ∂xα
Bgd

2 − ∂yα
Bgd

1 + S αBgd

0 − 2RαBgd

1 +QαBgd

2 .
(3.3)

As it was noted in [8], Bagderina’s beta quantities (3.3) coincide with the compo-
nents of the pseudocovectorial field α of the weight 1 constructed in [7]:

β Bgd

1 = α1 = A, β Bgd

2 = α2 = B. (3.4)

It is convenient to express the components (3.4) of the field α directly through P ,
Q, R, S, as it was done in [3, 4] and [7], rather than through (3.1):

A = P0.2 − 2Q1.1 +R2.0 + 2P S1.0 + S P1.0−

− 3P R0.1 − 3RP0.1 − 3QR1.0 + 6QQ0.1,

B = S2.0 − 2R1.1 +Q0.2 − 2S P0.1 − P S0.1+

+ 3S Q1.0 + 3QS1.0 + 3RQ0.1 − 6RR1.0.

(3.5)



4 RUSLAN SHARIPOV

Bagderina’s third order expressions are given by the formulas (2.3) in [5]:

γBgd

10 = ∂xβ
Bgd

1 −Qβ Bgd

1 + P β Bgd

2 ,

γBgd

11 = ∂xβ
Bgd

2 −Rβ Bgd

1 +Qβ Bgd

2 ,

γBgd

20 = ∂yβ
Bgd

1 −Rβ Bgd

1 +Qβ Bgd

2 ,

γBgd

21 = ∂yβ
Bgd

2 − S β Bgd

1 +Rβ Bgd

2 .

(3.6)

The expressions (3.6) are used in order to define other third order expressions. They
are given by the formulas (2.17) in [5]:

ΓBgd

0 = 3 β Bgd

2 γBgd

10 + β Bgd

1 (γBgd

20 − 4 γBgd

11 ),

ΓBgd

1 = β Bgd

2 (4 γBgd

20 − γBgd

11 )− 3 β Bgd

1 γBgd

21 .
(3.7)

As it was shown in [8], Bagderina’s gamma quantities (3.7) coincide with the com-
ponents of the pseudocovectorial field β of the weight 3 constructed in [7]:

ΓBgd

0 = β1 = −H, ΓBgd

1 = β2 = G. (3.8)

The quantities H and G in (3.8) can be expressed through A and B from (3.5) in
a more explicit way. They are given by the following formulas taken from [7]:

G = −BB1.0 − 3AB0.1 + 4BA0.1 + 3S A2 − 6RBA+ 3QB2,

H = −AA0.1 − 3BA1.0 + 4AB1.0 − 3P B2 + 6QAB − 3RA2,
(3.9)

Bagderina’s fourth order expressions are given by the formulas (2.4) in [5]:

δ Bgd

10 = ∂xγ
Bgd

10 − 2QγBgd

10 + P (γBgd

20 + γBgd

11 )− 5αBgd

0 β Bgd

1 ,

δ Bgd

20 = ∂xγ
Bgd

20 − RγBgd

10 + P γBgd

21 − 4αBgd

1 β Bgd

1 − αBgd

0 β Bgd

2 ,

δ Bgd

30 = ∂yγ
Bgd

20 − S γBgd

10 +QγBgd

21 − 4αBgd

2 β Bgd

1 − αBgd

1 β Bgd

2 ,

δ Bgd

11 = ∂xγ
Bgd

11 − RγBgd

10 + P γBgd

21 − αBgd

1 β Bgd

1 − 4αBgd

0 β Bgd

2 ,

δ Bgd

21 = ∂xγ
Bgd

21 − R (γBgd

20 + γBgd

11 ) + 2QγBgd

21 − 5αBgd

1 β Bgd

2 ,

δ Bgd

31 = ∂yγ
Bgd

21 − S (γBgd

20 + γBgd

11 ) + 2RγBgd

21 − 5αBgd

2 β Bgd

2 .

(3.10)

The fifth order expressions by Bagderina are given by the formulas (2.5) in [5]:

ǫBgd

10 = ∂xδ
Bgd

10 − 3Qδ Bgd

10 + P (2 δ Bgd

20 + δ Bgd

11 )− 12αBgd

0 γBgd

10 ,

ǫBgd

20 = ∂yδ
Bgd

10 − 3Rδ Bgd

10 +Q (2 δ Bgd

20 + δ Bgd

11 )− 12αBgd

1 γBgd

10 ,

ǫBgd

11 = ∂xδ
Bgd

11 −Rδ Bgd

10 −Qδ Bgd

11 + 2P δ Bgd

21 − 2αBgd

1 γBgd

10 −

− 10αBgd

0 γBgd

11 − 10 (β Bgd

1 )2.

(3.11)

And finally, her sixth order expression is given by the formula (2.6) in [5]:

λBgd

10 = ∂xǫ
Bgd

10 − 4QǫBgd

10 + P (3 ǫBgd

20 + ǫBgd

11 )− 21αBgd

0 δ Bgd

10 . (3.12)
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In R2 and in any two-dimensional manifold there are two pseudotensorial fields
with constant components. They are denoted by the same symbol d and are given
by the same skew-symmetric matrix in any local coordinates:

dij =

∥

∥

∥

∥

0 1
−1 0

∥

∥

∥

∥

, d ij =

∥

∥

∥

∥

0 1
−1 0

∥

∥

∥

∥

. (3.13)

The components dij in (3.13) correspond to the pseutotensorial field d of the type
(0, 2) and the weight −1. The components d ij in (3.13) correspond to the pseu-
totensorial field d of the type (2, 0) and the weight 1. These two fields are used for
raising and lowering indices of other pseutotensorial fields. In particular, we have

αi =

2
∑

k=1

d ik αk, βi =

2
∑

k=1

d ik βk, (3.14)

In explicit form the equalities (3.14) are written as follows:

α1 = B = β Bgd

2 , α2 = −A = −β Bgd

1 , (3.15)

β1 = G = ΓBgd

1 , β2 = H = −ΓBgd

0 . (3.16)

The quantities (3.15) are the components of the pseudovectorial fieldα of the weight
2. The quantities (3.16) are the components of the pseudovectorial field β of the
weight 4. In [4] these quantities are used in order to define a pseudoscalar field F
of the weight 1. This field is defined by means of the formula

3F 5 =

2
∑

i=1

αi β
i = −

2
∑

i=1

βi α
i = AG+BH. (3.17)

One can define F more explicitly by applying (3.5) and (3.9) to (3.17):

F 5 = ABA0.1 +BAB1.0 −A2 B0.1 −B2 A1.0−

− P B3 + 3QAB2 − 3RA2 B + S A3.
(3.18)

Yu. Yu. Bagderina introduces her own quantity J0 (see (2.16) in [5]):

J Bgd

0 = (β Bgd

2 )2 γBgd

10 − β Bgd

1 β Bgd

2 (γBgd

20 + γBgd

11 ) + (β Bgd

1 )2 γBgd

21 . (3.19)

As it was noted in [8], Bagderina’s quantity J Bgd

0 in (3.19) is related to the quantity
F in (3.17) and in (3.18) in the following way:

J Bgd

0 = −F 5. (3.20)

Using J Bgd

0 , Yu. Yu. Bagderina introduces her mu quantity µBgd

1 :

µBgd

1 = (J Bgd

0 )1/5. (3.21)
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Comparing the formula (3.20) with the formula (3.21), we see that Bagderina’s mu
quantity differs from F only in sign:

µBgd

1 = −F.

The pseudocovectorial and pseudovectorial fields α with the components (3.4)
and (3.15), the pseudocovectorial and pseudovectorial fields β with the components
(3.8) and (3.16), and the pseudoscalar field F in (3.17) and (3.18) constitute basic
structures associated with any equation of the form (1.1). All of them are presented
by Yu. Yu. Bagderina in [5] using her own notations. However, none of them is new
in [5] as compared to [3, 4] and [7].

4. Cases of intermediate degeneration.

According to the classification from [3, 4] the class of equations of the form (1.1)
is subdivided into nine subclasses which are called cases. The case of general
position corresponds to the richest subclass of all nine. Any equation (1.1) taken
by chance falls into the case of general position with the probability 1. The other
eight classes are thin classes. Their total measure (probability) is zero.

The case of general position is defined by the condition

F 6= 0. (4.1)

Looking at (3.17), we can write (4.1) as

3F 5 = det

∥

∥

∥

∥

∥

A B

−H G

∥

∥

∥

∥

∥

6= 0. (4.2)

A matrix with nonzero determinant cannot have zero rows. It cannot have propor-
tional rows either. Note that A and B are components of the pseudocovectorial
field α in (3.4), while −H and G are components of the pseudocovectorial field β

in (3.8). Therefore, using (4.2), the condition (4.1) implies

α 6= 0, β 6= 0, α ∦ β. (4.3)

Conversely, using (3.4), (3.8), and (4.2), the conditions (4.3) imply (4.1).
The case of maximal degeneration is opposite to (4.3). It is given by the

following condition for the pseudocovectorial field α:

α = 0. (4.4)

Using using (3.4), (3.8), and (3.9), the condition (4.4) implies β = 0 and F = 0.
Recently in [8] it was shown that the item 1 of Bagderina’s classification Theorem

2 in [5] is equivalent to the case of general position from the prior papers [3, 4] and
[7]. Also in [8] it was shown that the item 9 of this classification Theorem 2 in [5]
is equivalent to the case of maximal degeneration from [3, 4]. Here we continue
our comparison work and proceed to the cases of intermediate degeneration.

The cases of intermediate degeneration are splitted off from (4.1) and (4.4)
by setting the following two conditions:

F = 0, α 6= 0. (4.5)



COMPARISON OF TWO CLASSIFICATIONS. 7

There are seven cases of intermediate degeneration. In this paper we consider
the first of them and compare it with item 2 in Bagderina’s Theorem 2 in [5].

As we noted above, the conditions (4.3) taken altogether imply (4.1). Therefore,
if the conditions (4.5) are fulfilled, then at least one of the last two conditions in
(4.3) should be broken. A zero vector (or a zero pseudovector) is parallel to any
other vector (or pseudovector). Therefore β = 0 is just a subcase of a more general
case β ‖ α. Hence the conditions (4.5) are equivalent to the following conditions:

α 6= 0, β ‖ α. (4.6)

The conditions (4.6) mean that there is a factor N such that

β = 3N α. (4.7)

The factor N in (4.7) is a pseudoscalar field of the weight 2. The field N was
discovered in [3] in the form N = Q in some special coordinates (see (6.2) in [3]).
The formula (4.7) was presented in [4] (see (4.2) in [4]). The formulas

N =
G

3B
, N = −

H

3A
(4.8)

are immediate from (4.7), (4.8), (3.4), and (3.8), (see (4.3) in [4]). The first formula
applies in the case B 6= 0, the second one in the case A 6= 0. If both A and
B are nonzero, both formulas are applicable. Note that A and B cannot vanish
simultaneously since A and B are components of the field α and α 6= 0 (see (4.5)
and (4.6) above).

Remark. The pseudoscalar field N , i. e. an object with proper geometric be-
havior, arises only if the conditions (4.5) are fulfilled. Otherwise the formulas (4.8)
yield two quantities with no meaning at all.

Apart from N there are some other pseudotensorial fields and objects of different
geometric nature associated with the equations (1.1) in all cases of intermediate
degeneration. Here are the quantities ϕ1 and ϕ2:

ϕ1 = −3A
AS −B0.1

5B2
− 3

A0.1 +B1.0 − 3AR

5B
−

6

5
Q,

ϕ2 = 3
AS −B0.1

5B
−

3

5
R.

(4.9)

The formulas (4.9) apply in the case B 6= 0. If A 6= 0, we use the formulas

ϕ1 = −3
B P +A1.0

5A
+

3

5
Q,

ϕ2 = 3B
B P +A1.0

5A2
− 3

B1.0 +A0.1 + 3BQ

5A
+

6

5
R.

(4.10)

If both A and B are nonzero, then both formulas (4.9) and (4.10) are applicable.
The quantities ϕ1 and ϕ2 do not form a pseudotensorial field. They are trans-

formed as follows under the point transformations (1.2):

ϕi =

2
∑

j=1

T j
i ϕ̃j −

∂ ln detT

∂xi
. (4.11)
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Here x1 = x, x2 = y and T is the transition matrix defined in (2.3).

The quantities ϕ1 and ϕ2 were introduced in [3] using some special coordinates.
The formulas (4.9) and (4.10) were derived in [4]. These formulas are applicable in
arbitrary coordinates x and y. Due to the transformation rule (4.11) the quantities
ϕ1 and ϕ2 can be combined with the components of the array θ defined in [7] in
order to form connection components (see (6.10) in [3] or (4.22) in [4]):

Γ k
ij = θkij −

ϕi δ
k
j + ϕj δ

k
i

3
. (4.12)

Note that the connection (4.12) is different from the connection used in [7] and
later in [8] for the case of general position. The quantities ϕ1 and ϕ2 here are also
different from those used in the case of general position.

The second field introduced in [3] is M (see (6.7) in [3]). The first was N that
was introduced as N = Q in some special coordinates (see (6.2) in [3]). The field
M was also first introduced in that special coordinates. The formulas for M in
arbitrary coordinates were derived in [4] (see (4.28) and (4.29) in [4]):

M = −
12AN (AS −B0.1)

5B
−AN0.1 +

24

5
AN R−

−
6

5
N A0.1 −

6

5
N B1.0 +BN1.0 −

12

5
BN Q,

(4.13)

M = −
12BN (B P +A1.0)

5A
+BN1.0 +

24

5
BN Q+

+
6

5
N B1.0 +

6

5
N A0.1 −AN0.1 −

12

5
AN R.

(4.14)

The formula (4.13) applies in the case B 6= 0. If A 6= 0, we use the formula (4.14).

In the cases of intermediate degeneration we loose β as an independent
field. It becomes parallel to α (see (4.6)). However, exactly at that instant another
pseudocovectorial field arises. It was discovered in [3] and was denoted through γ.
Initially γ was presented in some special coordinates. Then in [4] it was expressed
by explicit formulas in arbitrary coordinates (see (4.30) and (4.31) in [4]):

γ1 =
6AN (AS −B0.1)

5B2
−

18N AR

5B
+

+
6N (A0.1 +B1.0)

5B
−N1.0 +

12

5
N Q− 2ΩA.

(4.15)

γ2 = −
6N (AS −B0.1)

5B
−N0.1 +

6

5
N R− 2ΩB, (4.16)

The formulas (4.15) and (4.16) are used if B 6= 0. If A 6= 0, we write:

γ1 =
6N (B P +A1.0)

5A
−N1.0 −

6

5
N Q− 2ΩA, (4.17)
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γ2 = −
6BN (B P +A1.0)

5A2
+

18N BQ

5A
+

+
6N (B1.0 +A0.1)

5A
−N0.1 −

12

5
N R− 2ΩB.

(4.18)

The weight of the pseudocovectorial field γ given by the formulas (4.15) and (4.16)
or by the formulas (4.17) and (4.18) is equal to 2. Note that the formulas (4.15),
(4.16), (4.17), (4.18) in [4] are given in a pseudovectorial form, i. e. with upper
indices (see (4.30), (4.31), (4.32), and (4.33) in [4]).

The pseudoscalar field Ω is the third field common for all cases of intermediate

degeneration. This field was introduced in [3] by means of the formulas

Ω =
5

6

2
∑

i=1

2
∑

j=1

ωij d
ij , where ωij =

∂ϕi

∂xj
−

∂ϕj

∂xi
, (4.19)

in some special coordinates (see (6.17) and (6.18) in [3]). It turns out that the
formulas (4.19) are applicable in arbitrary coordinates as well (see (4.15) and (4.16)
in [4]). The matter is that Ω is related to the curvature tensor of the connection
(4.12). The well-known formula for the curvature tensor (see [9]) is written as

Rk
rij =

∂Γ k
jr

∂xi
−

∂Γ k
ir

∂xj
+

2
∑

q=1

Γ k
iqΓ

q
jr −

2
∑

q=1

Γ k
jqΓ

q
ir. (4.20)

Like in (4.11), here x1 = x and x2 = y are coordinates. Substituting (4.12) into
the formula (4.19), we calculate Rk

rij and then find that

ωij =

2
∑

k=1

Rk
kij (4.21)

Due to (4.21) the quantities ωij are components of a tensor, while Ω in (4.19) is a
pseudoscalar of the weight 1. Here are explicit formulas for Ω:

Ω =
2AB0.1(AS −B0.1)

B3
+

(2A0.1 − 3AR)B0.1

B2
+

+
(B1.0 − 2A0.1)AS

B2
+

AB0.2 −A2 S0.1

B2
−

A0.2

B
+

+
3A0.1 R+ 3AR0.1 −A1.0 S −AS1.0

B
+R1.0 − 2Q0.1,

(4.22)

Ω =
2BA1.0(B P +A1.0)

A3
−

(2B1.0 + 3BQ)A1.0

A2
+

+
(A0.1 − 2B1.0)B P

A2
−

BA2.0 +B2 P1.0

A2
+

B2.0

A
+

+
3B1.0 Q+ 3BQ1.0 −B0.1 P −B P0.1

A
+Q0.1 − 2R1.0

(4.23)

(see (4.17) and (4.21) in [4]). The formula (4.22) applies in the case B 6= 0. If
A 6= 0, we apply the formula (4.23).
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It is important to note that the fields α, γ and M obey the relationship:

M =

2
∑

i=1

αi γ
i =

2
∑

i=1

2
∑

j=1

αi d
ij γj. (4.24)

The relationship (4.24) is easily derived from (4.27) in [4]. Since α and γ in the right
hand side of (4.24) are pseudocovectorial fields of the weights 1 and 2 respectively,
and d is a pseudotensorial field of the weight 1, we see that M is a pseudoscalar
field of the weight 4. This fact is known since [3].

5. Special coordinates.

Let’s recall that the cases of intermediate degeneration were introduced and
studied in [3] using some special coordinates where A = 0 and B = 1. However,
Bagderina’s classification Theorem 2 in [5] and her formulas are derived under the
restriction β Bgd

1 6= 0, which corresponds to A 6= 0 (see (3.4) above). In order to
compare our formulas with those in Bagderina’s paper [5] and in order to make this
comparison comfortable for us we need some other special coordinates, which are
similar to those in [3], but different from them.

Theorem 5.1. For any equation (1.1) with α 6= 0 in (3.4) there are some variables

x and y such that A = 1 and B = 0 in these variables.

Proof. Note that α in (3.4) is a peudocovectorial field of the weight 1 associated
with the equation (1.1) through the formulas (3.5). Raising indices according to
(3.14), we get the pseudovectorial field α of the weight 2 with the components
(3.15). Let X be some nonzero vector field such that X ‖ α. We can choose such
a field by fixing some coordinates x and y and setting X1 = α1 and X2 = α2 in
these coordinates. Being fulfilled in some particular coordinates, due to (2.4) the
parallelism X ‖ α holds in arbitrary coordinates.

It is well-known that any vector field X can be straighten (see [10]), i. e. there
are some coordinates x and y such that

X1 = 0, X2 = 1 (5.1)

in these coordinates. Combining (5.1) with X ‖ α and α 6= 0, we get

α1 = B = 0, α2 = −A 6= 0. (5.2)

Now let’s perform a special transformation of the form (1.2) given by the formulas

x̃ = x ỹ = ỹ(x, y). (5.3)

For the transformed components of α in (5.2) from (2.4) and (5.3) we derive

∥

∥

∥

∥

∥

0

−Ã

∥

∥

∥

∥

∥

= (detT )−2

∥

∥

∥

∥

∥

1 0

ỹ1.0 ỹ0.1

∥

∥

∥

∥

∥

·

∥

∥

∥

∥

∥

0

−A

∥

∥

∥

∥

∥

. (5.4)

Applying (2.3), we find that (5.4) is equivalent to B̃ = 0 and Ã = (ỹ0.1)
−1 A. It

is clear that, choosing a proper function ỹ(x, y) in (5.3), we can reach the required

equality Ã = 1 in the transformed coordinates x̃ and ỹ. �
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Thus, due to Theorem 5.1 proved just above we have special coordinates such
that the following equalities are fulfilled in them:

α1 = B = 0, α2 = −A = −1. (5.5)

Assuming that such special coordinates are chosen for x and y, we shall apply (5.5)
to various formulas from previous sections.

We cannot apply (5.5) to the formulas (4.8) since B is in the denominator of the
first of them. However we can apply (5.5) to (4.7). This yields

β1 = 3N α1 = 0, β2 = 3N α2 = −3N. (5.6)

Taking into account (3.16), from (5.6) we derive

G = ΓBgd

1 = 0, H = −ΓBgd

0 = −3N. (5.7)

On the other hand, substituting (5.6) into the formulas (3.9), we obtain

G = 3S, H = −3R. (5.8)

Comparing (5.8) with (5.7), we find that in our special coordinates

S = 0, N = R. (5.9)

The next step is to apply (5.5) to (4.23). As a result for the pseudoscalar field
Ω we derive the following very simple formula:

Ω = Q0.1 − 2R1.0. (5.10)

The pseudoscalar field M is given by the formula (4.14). Applying (5.5), (5.9), and
(5.10) to this formula, we obtain the following expression for M :

M = −R0.1 −
12

5
R2. (5.11)

The components of the pseudocovectorial field γ are given by the formulas (4.17)
and (4.18). Applying (5.5), (5.9), and (5.10) to them and using (5.11), we get

γ1 = 3R1.0 − 2Q0.1 −
6

5
RQ, γ2 = M. (5.12)

Unlike γ1 and γ2 in (5.12), the quantities ϕ1 and ϕ2 do not represent components
of a pseudotensorial field. Nevertheless, applying (5.5) to (4.10), we derive

ϕ1 =
3

5
Q, ϕ2 =

6

5
R. (5.13)

The non-tensorial quantities (5.13) are used in (4.12) to define a connection.
Now let’s return to the section 3. The formulas (3.1) and (3.2) for Bagderina’s al-

pha quantities from [5] remain unchanged. The formulas (3.4) express the following
comparison lemma coinciding with Lemma 3.2 in [8].
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Lemma 5.1. Bagderina’s beta quantities (3.3) coincide with the components of the

pseudocovectorial field α of the weight 1 constructed in [7].

The formulas (3.4) are affected by (5.5) in our special coordinates. They reduce to

β Bgd

1 = 1, β Bgd

2 = 0. (5.14)

The formulas (3.3) are equivalent to (3.5). Due to (5.14) or (5.5) and due to S = 0
in (5.9) they lead to the following differential equations:

P0.2 − 2Q1.1 +R2.0 − 3P R0.1 −

− 3RP0.1 − 3QR1.0 + 6QQ0.1 = 1,

− 2R1.1 +Q0.2 + 3RQ0.1 − 6RR1.0 = 0.

(5.15)

The equations (5.15) can be used in order to express higher order derivatives
through lower order ones.

Bagderina’s gamma quantities (3.6) become very simple in our special coordi-
nates. They are given by the following formulas:

γBgd

10 = −Q, γBgd

11 = −R,
(5.16)

γBgd

20 = −R, γBgd

21 = 0.

Bagderina’s gamma quantities (3.7) are described by the following comparison
lemma coinciding with Lemma 3.5 in [8].

Lemma 5.2. Bagderina’s gamma quantities (3.7) coincide with the components of

the pseudocovectorial field β of the weight 3 constructed in [7].

Combining (5.7) and (5.8), for Bagderina’s gamma quantities (3.7) in our special
coordinates we derive the following formulas:

ΓBgd

0 = 3R, ΓBgd

1 = 0. (5.17)

The formulas (5.17) are equally simple as (5.16).
Apart from (3.1), (3.3), (3.6), (3.10), (3.11), and (3.12), Yu. Yu. Bagderina uses

the quantity J Bgd

0 in [5] (see (3.19)). The quantity J Bgd

0 in (3.19) is described by
the following comparison lemma coinciding with Lemma 3.3 in [8].

Lemma 5.3. Bagderina’s quantity J Bgd

0 from (3.19) is related to the pseudoscalar

field F of the weight 1 constructed in [7] by means of the formula

J Bgd

0 = −F 5. (5.18)

In addition to (3.19) Yu. Yu. Bagderina uses four other quantities in item 2 of
her classification Theorem 2 in [5]. They are given by the formulas (2.17) in [5]:

j Bgd

0 =
3

β Bgd

1

(

β Bgd

2

β Bgd

1

δ Bgd

10 − δ Bgd

11

)

+
6 γBgd

10

(β Bgd

1 )2

(

γBgd

11 −
β Bgd

2

β Bgd

1

γBgd

11

)

. (5.19)
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The quantity (5.19) is the first of these additional quantities from (2.17) in [5]. The
second one is given by the following formula:

j Bgd

1 =
5

6

(

2 β Bgd

2 δ Bgd

20 − β Bgd

1 δ Bgd

30 −
(β Bgd

2 )2

β Bgd

1

δ Bgd

10

)

+

(

γBgd

20 −

−
2

3
γBgd

11 −
β Bgd

2

3 β Bgd

1

γBgd

10

)(

γBgd

20 + γBgd

11 − 2
β Bgd

2

β Bgd

1

γBgd

10

)

.

(5.20)

The rest two quantities are given by the formulas

j Bgd

2 =
1

β Bgd

1

(

δ Bgd

20 −
β Bgd

2

β Bgd

1

δ Bgd

10

)

+

+
γBgd

10

5 (β Bgd

1 )2

(

7
β Bgd

2

β Bgd

1

γBgd

10 − 6 γBgd

20 − γBgd

11

)

,

j Bgd

3 =
3

5

(

δ Bgd

10

(β Bgd

1 )3
−

6 (γBgd

10 )2

5 (β Bgd

1 )4

)

.

(5.21)

The quantity j Bgd

0 in (5.19) is described by the following comparison lemma.

Lemma 5.4. If the conditions (4.5) are fulfilled, i. e. in the cases of intermediate

degeneration, Bagderina’s jay quantity j Bgd

0 from (5.19) behaves as a pseudoscalar

field of the weight 1. It is related to the pseudoscalar field Ω introduced in [3] as

j Bgd

0 = −3Ω . (5.22)

Lemma 5.4 is proved by verifying the formula (5.22). This could be done directly
using some symbolic algebra package. In my case that was Maple1.

Lemma 5.5. If the conditions (4.5) are fulfilled, i. e. in the cases of intermediate

degeneration, Bagderina’s jay quantity j Bgd

1 from (5.20) behaves as a pseudoscalar

field of the weight 4. It is related to the pseudoscalar field M introduced in [3] as

j Bgd

1 =
5

2
M. (5.23)

Lemma 5.5 is similar to Lemma 5.4. It is proved by verifying the formula (5.23)
by means of direct computations.

Bagderina’s quantities j Bgd

2 and j Bgd

3 in (5.21) are different. They do not behave
as pseudoscalar fields. However, some definite combination of them do. On page
27 of her paper [5] Yu. Yu. Bagderina introduces the following quantity:

j Bgd

5 = 5
(

2 j Bgd

1 j Bgd

3 + (j Bgd

2 − j Bgd

0 /6)2
)

. (5.24)

Lemma 5.6. If the conditions (4.5) are fulfilled, i. e. in the cases of intermediate

degeneration, Bagderina’s jay quantity j Bgd

5 from (5.24) behaves as a pseudoscalar

field of the weight 2.

1 Maple is a trademark of Waterloo Maple Inc.
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The relation of Bagderina’s field j Bgd

5 to the fields introduced in [3] and [4] is
studied below. Now we write the explicit formulas for j Bgd

2 and j Bgd

3 from (5.21) in
our special coordinates introduced according to Theorem 5.1:

j Bgd

2 = 4Q0.1 − 5R1.0 +
18

5
QR,

j Bgd

3 = 3P0.1 −
18

5
Q1.0 −

36

5
P R+

162

25
Q2.

(5.25)

The formula for j Bgd

5 in these special coordinates is more complicated than (5.25):

j Bgd

5 = 180RP R0.1 − 216QRR1.0 −
(

180R2
0.0

+ 75R0.1

)

P0.1 +

+
(

216R2 + 90R0.1

)

Q1.0 −
(

270R1.0 − 162QR
)

Q0.1 −

− 162R0.1 Q
2 + 180R2

1.0
+ 432R3P − 324Q2R2 +

405

4
Q2

0.1
.

(5.26)

Apart from j Bgd

5 , on page 27 of her paper [5] Yu. Yu. Bagderina introduces the
quantity j Bgd

4 by means of the following formula:

j Bgd

4 =
ΓBgd

0

β Bgd

1

. (5.27)

Lemma 5.7. If the conditions (4.5) are fulfilled, i. e. in the cases of intermediate

degeneration, under the auxiliary condition β Bgd

1 6= 0 Bagderina’s jay quantity j Bgd

4

from (5.27) is related to the pseudoscalar field N of the weight 2 introduced in [3]
and effectively calculated in [4] by means of the formula

j Bgd

4 = 3N. (5.28)

The comparison Lemma 5.7 is immediate from Lemma 5.1 and Lemma 5.2 due
to the formulas (3.4), (3.8), and (4.8).

6. The first case of intermediate degeneration

and Bagderina’s type two equations.

The first case of intermediate degeneration is determined by the conditions

F = 0, α 6= 0, M 6= 0, (6.1)

where F = 0 and α 6= 0 are common for all cases of intermediate degeneration

(see (4.5)). From M 6= 0, using either (4.13) or (4.14), we derive

N 6= 0, (6.2)

where N is given by the formulas (4.8). The equality (4.24) can be written as

M = det

∥

∥

∥

∥

∥

α1 α2

γ1 γ2

∥

∥

∥

∥

∥

, (6.3)
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which is similar to (4.2). From M 6= 0 and (6.3) we derive

α 6= 0, γ 6= 0, α ∦ γ. (6.4)

Conversely, due to (6.3) the conditions (6.4) imply M 6= 0, i. e. they are equivalent
to the inequality M 6= 0.

Bagderina’s type two equations are defined in item 2 of her classification Theo-
rem 2 in [5]. They are given by the following conditions:

J Bgd

0 6= 0, β Bgd

1 6= 0, j Bgd

0 6= 0, ΓBgd

0 6= 0. (6.5)

Applying the comparison lemmas (see Lemma 5.3, Lemma 5.1, Lemma 5.4, Lem-
ma 5.7 and the formulas (5.18), (3.15), (5.22), (5.27), (5.28)), we can write the
conditions (6.5) in terms of the fields introduced in [3, 4] and [7]:

F 6= 0, α 6= 0, Ω 6= 0, N 6= 0. (6.6)

Comparing (6.6) with (6.1), we see that the conditions do not coincide. This means
that Bagderina’s classification in [5] is slightly different from that of [3, 4]. For the
further comparison purposes we draw the following table.

R. A. Sharipov’s classification Yu. Yu. Bagderina’s classification

1997-1998 2013

ShrGP BgdET1

ShrID1 BgdET2

ShrID2 BgdET3

ShrID3 BgdET4

ShrID4 BgdET5

ShrID5 BgdET6

ShrID6 BgdET7

ShrID7 BgdET8

ShrMD BgET9

The abbreviations in the above table read as follows:

– ShrGP stands for Sharipov’s case of general position;
– ShrMD stands for Sharipov’s case of maximal degeneration;
– ShrID1 stands for Sharipov’s case of intermediate degeneration 1;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– ShrID1 stands for Sharipov’s case of intermediate degeneration 7;
– BgdET1 stands for Bagderina’s equations of type 1;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– BgdET9 stands for Bagderina’s equations of type 9.



16 RUSLAN SHARIPOV

Again looking at (6.6) and (6.1), we see that generally speaking the equation
classes ShrID1 and BgdET2 do not coincide, but they have a substantial overlap.
Their overlap is described by the following conditions:

F 6= 0, α 6= 0, M 6= 0, Ω 6= 0. (6.7)

Indeed, M 6= 0 in (6.1) implies N 6= 0 in (6.6) (see (6.2)). However M 6= 0 in (6.1)
does not imply Ω 6= 0 in (6.6), unless some deeper mutual relations of these field
will be discovered. Conversely, N 6= 0 and Ω 6= 0 in (6.6) do not imply M 6= 0 in
(6.1). Below we shall study the intersection class ShrID1∩BgdET2.

Let’s consider Bagderina’s invariant differentiation operator D Bgd

1 . It is given by
the first formula (2.8) from Bagderina’s classification Theorem 2 in [5]:

D Bgd

1 =
β Bgd

2

(µBgd

1 )2
∂

∂x
−

β Bgd

1

(µBgd

1 )2
∂

∂y
. (6.8)

Taking into account (3.15), (5.22) and Bagderina’s formula µBgd

1 = j Bgd

0 from (2.10)
in item 2 of Theorem 2 in [5] (which is different from (3.21)), we write (6.8) as

D Bgd

1 =
α1

(3Ω)2
∂

∂x
+

α2

(3Ω)2
∂

∂y
. (6.9)

Invariant differentiation operators were not considered in [3] and [4] for the first
case of intermediate degeneration ShrID1. Instead of them covariant differentiation
operators along pseudovectorial fields were considered. In particular we have

∇α = α1 ∇1 + α2 ∇2, ∇γ = γ1 ∇1 + γ2 ∇2 (6.10)

(see (6.13) in [3] and (5.2) in [4]). The covariant derivatives in (6.10) extend partial
derivatives from (6.9). They are defined by means of the formula

∇kF
i1... ir
j1... js

=
∂F i1... ir

j1... js

∂xk
+

r
∑

n=1

2
∑

vn=1

Γ in
k vn

F i1... vn... ir
j1... js

−

−

s
∑

n=1

2
∑

wn=1

Γwn

k jn
F i1... ir
j1... wn... js

+mϕk F
i1... ir
j1... js

(6.11)

(see (6.11) in [3] or (4.23) in [4]). The covariant derivative ∇k in (6.11) is applied
to a pseudotensorial field of the type (r, s) and the weight m. The connection
components Γ k

ij in (6.11) are defined by (4.12). They are canonically associated
with a given equation equation (1.1).

Due to the covariant derivatives ∇1 and ∇2 in (6.10) the differential opera-
tors (6.10) are applicable not only to scalar invariants, but to any tensorial and
pseudotensorial invariants as well. Yu. Yu. Bagderina’s operator (6.9) can also be
extended in this manner using covariant derivatives ∇1 and ∇2:

D Bgd

1 =
α1

(3Ω)2
∇1 +

α2

(3Ω)2
∇2. (6.12)
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Lemma 6.1. Within the intersection class ShrID1∩BgdET2, i. e. if the conditions
(6.7) are fulfilled, Bagderina’s invariant differentiation operator D Bgd

1 from (6.8)
extended in (6.12) is related to the differentiation operator ∇α from [3] as

D Bgd

1 =
1

(3Ω)2
∇α. (6.13)

Lemma 6.1 and the formula (6.13) are immediate from (6.9) and (6.10). So we
can proceed to the second invariant differentiation operator by Yu. Yu. Bagderina.
It is given by the second formula (2.8) in Bagderina’s Theorem 2 in [5]:

D Bgd

2 =

(

µBgd

2 β Bgd

2 − 3
µBgd

2

β Bgd

1

)

∂

∂x
+ β Bgd

1

∂

∂y
. (6.14)

The quantity µBgd

2 in (6.14) is given by one of the formulas (2.10) in item 2 of
Bagderina’s classification Theorem 2 in [5]:

µBgd

2 =
3 β Bgd

1 eBgd

1

ΓBgd

0

. (6.15)

The quantity eBgd

1 in (6.15) is expressed by one of the formulas (2.18) in [5]:

eBgd

1 =
5

(β Bgd

1 )2

(

β Bgd

2

β Bgd

1

ǫBgd

10 − ǫBgd

11

)

+

+
15

(β Bgd

1 )3

(

γBgd

11 −
β Bgd

2

β Bgd

1

γBgd

10

)

−
6 γBgd

10

(β Bgd

1 )2
j Bgd

0 .

(6.16)

The notations used in (6.16) are given above in (3.3), (3.6), (3.10), (3.11) and
in (5.19). In order to transform (6.14) we use our special coordinates introduced
according to Theorem 5.1. Upon replacing partial derivatives in (6.14) by covariant
derivatives ∇1 and ∇2 in these special coordinates we get

D Bgd

2 =
(

9Q0.1 − 18R1.0

)

∇1 +

(

10P0.2

R
− 30P0.1 −

−
15Q1.1

R
−

36QR1.0

R
+

63QQ0.1

R
−

30P R0.1

R
−

60

R

)

∇2.

(6.17)

In order to reveal the invariant nature of the operator (6.17) we calculate the
covariant derivatives of the pseudoscalar field Ω in our special coordinates:

∇1Ω = 2P0.2 − 3Q1.1 − 6RP0.1 −

−
36QR1.0

5
+

63QQ0.1

5
− 6P R0.1 − 2,

∇2Ω =
18RR1.0

5
−

9RQ0.1

5
.

(6.18)
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The quantities (6.18) are components of the pseudocovectorial field ∇Ω of the
weight 1. In order to apply them to (6.17) we need to raise their indices:

∇iΩ =

2
∑

k=1

d ik ∇kΩ . (6.19)

The quantities (6.19) are components of the pseudovectorial field ∇Ω of the weight
2. Due to (3.13) the formula (6.19) simplifies to

∇1Ω = ∇2Ω, ∇2Ω = −∇1Ω . (6.20)

Taking into account (5.5) and (6.20), then comparing (6.18) with (6.17), we get

D Bgd

2 =

(

50α1

N
−

5∇1Ω

N

)

∇1 +

(

50α2

N
−

5∇2Ω

N

)

∇2. (6.21)

The denominator R in (6.17) is replaced by the denominator N in (6.21) since
N = R in our special coordinates (see (5.9)).

Note that (6.21) is a proper tensorial formula. Therefore, being derived in our
special coordinates, it remains valid in arbitrary coordinates.

Any vectorial and/or pseudovectorial field on the plane R2 or in a two-dimen-
sional manifold can be expressed as a linear combination of any other two non-
parallel vectorial and/or pseudovectorial field. In our case ShrID1∩BgdET2 this
means that ∇Ω is expressed through α and γ since α ∦ γ due to M 6= 0 in (6.7).
This expression for ∇Ω can be written explicitly:

∇Ω =
∇γΩ

M
α−

∇αΩ

M
γ. (6.22)

Now, applying (6.22) to (6.21), we derive the following formula:

D Bgd

2 =

(

50

N
−

5∇γΩ

M N

)

∇α +

(

5∇αΩ

M N

)

∇γ . (6.23)

Lemma 6.2. Within the intersection class ShrID1∩BgdET2, i. e. if the conditions
(6.7) are fulfilled, Bagderina’s invariant differentiation operator D Bgd

2 in (6.14) is

related to the covariant differentiation operators ∇α and ∇γ introduced in [3] ac-
cording to the formula (6.23).

7. Curvature tensor and additional fields.

Let’s return to the field Ω associated with the curvature tensor (4.20) of the
connection (4.20). Following the receipt of [3] we write

Rk
qij = Rk

q dij , where Rk
q =

1

2

2
∑

i=1

2
∑

j=1

Rk
qij d

ij (7.1)

(see (7.1) and (7.2) in [3]). The quantities Rk
q in (7.1) are components of a pseu-

dotensorial field of the type (1, 1) and the the weight 1. This field has two pseu-
doscalar invariants — its trace and its determinant. The trace of this field reduces
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to the pseudoscalar field Ω according to the formula:

tr(R) =
3

5
Ω. (7.2)

Its determinant is a new field. In the framework of the second case of interme-

diate degenerations (see [4]), i. e. if M = 0, this field can be expressed through
the field Λ given by the formulas (6.10) in [4]:

det(R) = −
9

25
Λ (Ω + Λ). (7.3)

In the present paper we deal with the case M 6= 0. Therefore we shall not use the
formulas (7.2) and (7.3) and we shall treat det(R) as an separate pseudoscalar field
of the weight 2. This field can be easily calculated in arbitrary coordinates using
the formulas (4.12), (4.20), and (7.1). However, we choose our special coordinates
introduced through Theorem 5.1. In these coordinates we have

det(R) = −
36

35
RP R0.1 +

216

125
QRR1.0 +

(

36

25
R2

0.0
+

3

5
R0.1

)

P0.1 −

−

(

216

125
R2 +

18

25
R0.1

)

Q1.0 +

(

9

5
R1.0 −

162

125
QR

)

Q0.1 +

+
162

125
R0.1 Q

2 −
27

25
R2

1.0
−

432

125
R3 P +

324

125
Q2R2 −

18

25
Q2

0.1
.

(7.4)

Comparing (7.4) with (5.26), we derive the following formula:

j Bgd

5 = −125 det(R) +
45

4
Ω2. (7.5)

This formula (7.5) proves Lemma 5.6. It expresses Bagderina’s quantity j Bgd

5

through the pseudotensorial field R in (7.1) previously known in [4].
Our further efforts are toward expressing det(R) through M , N , Ω, α, γ and

their proper tensorial derivatives. For this purpose we need a little bit of theory.
For a while assume that α and γ are arbitrary two pseudovectorial fields with

the weights m and n respectively. Let X be a third pseudovectorial field with the
weight k. Then we have the following identities:

[∇α,∇γ ]X−∇[α,γ]X = R(α,γ)X− k ω(α,γ) X, (7.6)

∇αγ −∇γα = [α,γ] +T(α,γ)X. (7.7)

Here R(α,γ) and T(α,γ) are the curvature operator and the torsion operator
respectively (see [11]). The term k ω(α,γ) X is determined by the skew symmetric
form ω whose components are given in (4.19). The connection components (4.12)
are symmetric. Therefore we have no torsion here:

T(α,γ) = 0. (7.8)

The formulas (7.6) and (7.7) are well known in differential geometry, though
they are usually applied to vectorial fields rather then to pseudovectorial ones.
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Their application to pseudovectorial fields have some features. In particular, the
covariant derivatives (6.11) and the commutator of pseudovectorial fields requires
some auxiliary quantities ϕi obeying the transformation rules (4.11):

[α,γ] =

2
∑

i=1

( 2
∑

s=1

αs ∂γi

∂xs
− γs ∂αi

∂xs
+ nαs ϕs γ

i −mγs ϕs α
i

)

∂

∂xi
. (7.9)

The formula (7.9) can be treated as a definition of commutator in the case of
pseudotensorial fields.

Returning to our previously defined pseudovectorial fields α and γ we should
remind that their weights are 2 and 3 respectively. Note that they were originally
defined as pseudocovectorial fields of the weights 1 and 2. But having the skew-
symmetric metric pseudotensors (3.13), we can always raise and lower indices of
any pseudotensorial field. We should also note that

∇d = 0 (7.10)

for both metric pseudotensors with the components (3.13). Due to (7.10) the op-
erations of raising and lowering indices commute with covariant differentiations.

Now let’s calculate the curvature operator R(α,γ) applied to some pseudovec-
torial field X taking into account the special structure of Rk

qij in (7.1):

R(α,γ)X =
2

∑

i=1

2
∑

j=1

2
∑

s=1

2
∑

q=1

Rs
q dij α

i γj Xq ∂

∂xs
. (7.11)

Here Rs
q are the components of that very matrix whose determinant is applied in

(7.5). Taking into account (4.24), we write (7.11) as

R(α,γ)X =

2
∑

s=1

2
∑

q=1

M Rs
q X

q ∂

∂xs
= M R(X). (7.12)

Here R is the linear operator whose matrix is formed by Rs
q.

At this moment we can apply (7.6) to (7.12). As a result we get

R(X) =
1

M

(

[∇α,∇γ ]X−∇[α,γ]X+ k ω(α,γ) X
)

. (7.13)

Let’s recall the formula (4.21). This formula combined with (7.1) and (4.24) yields

ω(α,γ) = tr(R)

2
∑

i=1

2
∑

j=1

dij α
i γj = tr(R)M. (7.14)

Substituting (7.14) into (7.13), we derive

R(X) =
1

M

(

[∇α,∇γ ]X−∇[α,γ]X
)

+ k tr(R) X. (7.15)

The commutator [α,γ] in (7.15) can be calculated with the use of (7.7) and (7.8):

[α,γ] = ∇αγ −∇γα. (7.16)
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The covariant derivatives ∇αγ and ∇γα are that very derivatives used in [3, 4]:

∇αα = Γ1
11 α+ Γ2

11 γ, ∇αγ = Γ1
12 α+ Γ2

12 γ,
(7.17)

∇γα = Γ1
21 α+ Γ2

21 γ, ∇γγ = Γ1
22 α+ Γ2

22 γ

(see (6.13) in [3] or (5.2) in [4]). The coefficients Γ1
11, Γ

2
11, Γ

1
12, Γ

2
12, Γ

1
21, Γ

2
21, Γ

1
22,

Γ2
22 are pseudoscalar fields uniquely determined by α and γ since α ∦ γ due to

M 6= 0 in (6.7). Applying (7.17) to (7.16), we get

[α,γ] = (Γ1
12 − Γ1

21)α+ (Γ2
12 − Γ2

21)γ (7.18)

Then we use (7.18) in order to calculate ∇[α,γ]X in (7.15):

∇[α,γ]X = (Γ1
12 − Γ1

21)∇αX+ (Γ2
12 − Γ2

21)∇γX. (7.19)

The first term [∇α∇γ ]X in (7.15) is expanded as follows:

[∇α,∇γ ]X = ∇α

(

∇γX
)

−∇γ

(

∇αX
)

. (7.20)

Taking into account (7.19) and (7.20), the formula (7.15) turns to

R(X) =
∇α

(

∇γX
)

−∇γ

(

∇αX
)

M
−

−
(Γ1

12 − Γ1
21)

M
∇αX−

(Γ2
12 − Γ2

21)

M
∇γX+ k tr(R) X.

(7.21)

Now, using the formula (7.21), we can calculate two pseudovectoial fields R(α)
and R(γ), expressing them back through α and γ as linear combinations:

R(α) = F 1
1 α+ F 2

1 γ, R(γ) = F 1
2 α+ F 2

2 γ. (7.22)

Indeed, for R(α) in (7.22) we have the following expression (with k = 2):

R(α) =
∇α

(

∇γα
)

−∇γ

(

∇αα
)

M
−

−
(Γ1

12 − Γ1
21)

M
∇αα−

(Γ2
12 − Γ2

21)

M
∇γα+ k tr(R) α.

(7.23)

The derivatives ∇αα and ∇γα are taken from (7.17). The second order derivatives
∇α

(

∇γα
)

and ∇α

(

∇γα
)

are transformed as follows:

∇α

(

∇γα
)

= ∇α

(

Γ1
21 α+ Γ2

21 γ
)

= ∇α

(

Γ1
21

)

α+

+Γ1
21

(

Γ1
11 α+ Γ2

11 γ
)

+∇α

(

Γ2
21

)

γ + Γ2
21

(

Γ1
12 α+ Γ2

12 γ
)

,
(7.24)

∇γ

(

∇αα
)

= ∇γ

(

Γ1
11 α+ Γ2

11 γ
)

= ∇γ

(

Γ1
11

)

α+

+Γ1
11

(

Γ1
21 α+ Γ2

21 γ
)

+∇γ

(

Γ2
11

)

γ + Γ2
11

(

Γ1
22 α+ Γ2

22 γ
)

.
(7.25)
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The pseudovectorial field R(γ) in (7.22) is treated similarly. From (7.21) we derive
the following expression for this field (with k = 3):

R(γ) =
∇α

(

∇γγ
)

−∇γ

(

∇αγ
)

M
−

−
(Γ1

12 − Γ1
21)

M
∇αγ −

(Γ2
12 − Γ2

21)

M
∇γγ + k tr(R) γ.

(7.26)

The derivatives ∇αγ and ∇γγ are taken from (7.17). The second order derivatives
∇α

(

∇γγ
)

and ∇γ

(

∇αγ
)

are transformed as follows:

∇α

(

∇γγ
)

= ∇α

(

Γ1
22 α+ Γ2

22 γ
)

= ∇α

(

Γ1
22

)

α+

+Γ1
22

(

Γ1
11 α+ Γ2

11 γ
)

+∇α

(

Γ2
22

)

γ + Γ2
22

(

Γ1
12 α+ Γ2

12 γ
)

,
(7.27)

∇γ

(

∇αγ
)

= ∇γ

(

Γ1
12 α+ Γ2

12 γ
)

= ∇γ

(

Γ1
12

)

α+

+Γ1
12

(

Γ1
21 α+ Γ2

21 γ
)

+∇γ

(

Γ2
12

)

γ + Γ2
12

(

Γ1
22 α+ Γ2

22 γ
)

.
(7.28)

Summarizing the formulas (7.23), (7.24), (7.25), (7.26), (7.27), and (7.28), we can
formulate the following lemma.

Lemma 7.1. The coefficients F 1
1 , F 2

1 , F
1
2 , F

2
2 of the linear combinations (7.22)

are expressed through M , through the pseudoscalar fields Γ1
11, Γ

2
11, Γ

1
12, Γ

2
12, Γ

1
21,

Γ2
21, Γ

1
22, Γ2

22 from (7.17), and through covariant derivatives of them.

Note that α ∦ γ due to M 6= 0 in (6.7). Hence the values of the fields α and
γ constitute a basis at each point of R2 or a two-dimensional manifold. In this
case the coefficients F 1

1 , F
2
1 , F

1
2 , F

2
2 of the linear combinations (7.22) constitute

the matrix of the linear operator R in (7.22). It is well-known (see [12]) that the
determinant of a linear operator does not depend on a basis where its matrix is
calculated. Therefore we have the following equality:

det(R) = det

∥

∥

∥

∥

∥

R1
1 R1

2

R2
1 R2

2

∥

∥

∥

∥

∥

= det

∥

∥

∥

∥

∥

F 1
1 F 1

2

F 2
1 F 2

2

∥

∥

∥

∥

∥

. (7.29)

Applying (7.29) along with Lemma 7.1 to the formula (7.5), we derive a theorem.

Theorem 7.1. Within the intersection class ShrID1∩BgdET2, i. e. if the condi-

tions (6.7) are fulfilled, Bagderina’s pseudoscalar field j Bgd

5 from (5.24) is expressed
through M , through Ω, through the pseudoscalar fields Γ1

11, Γ
2
11, Γ

1
12, Γ

2
12, Γ

1
21, Γ

2
21,

Γ1
22, Γ2

22 from (7.17), and through covariant derivatives of them along the pseu-

dovectorial fields α and γ.

8. Comparison of invariants.

Two scalar invariants in the first case of intermediate degeneration are very
simple. They are given as two ratios of the pseudoscalar fields M , N and Ω:

I1 =
M

N2
, I2 =

Ω2

N
(8.1)
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(see (6.8) and (6.19) in [3] or (5.1) in [4]). Other scalar invariants are more com-
plicated. The formulas (7.17) and the coefficients Γ1

11, Γ
2
11, Γ

1
12, Γ

2
12, Γ

1
21, Γ

2
21, Γ

1
22,

Γ2
22 therein are used for introducing them (see (6.13) in [3] or (5.2) in [4]). Some

of the coefficients in (7.17) are identically zero:

Γ2
11 = 0, Γ1

21 = 0. (8.2)

Some others are expressed through the pseudoscalar field N :

Γ1
11 = −

3

5
N, Γ2

21 = −
3

5
N. (8.3)

And some of them are bound to the invariants I1 and I2 in (8.1) and to the pseu-
doscalar field N by more complicated relationships

I1 Γ
2
12 = I4 N +

3

5
I1 N + 2 I21 N, (8.4)

(

I1 Γ
2
22

)4
+
(

I7 N
3
)2

+
(

16 I2 N
3 I1

4
)2

=

= 32 I7N
6 I2 I1

4 + 2
(

I7 N
3 + 16 I2N

3 I1
4
) (

I1 Γ
2
22

)2
(8.5)

(see (6.22) and (6.23) in [3] or (5.6) and (5.7) in [4]). Unfortunately the formula
(6.22) in [3] is mistyped and then copied to (5.6) in [4]. The minus signs in the
right hand side of this formula should be altered for pluses. Here we present the
correct formula (8.4). As for the quantities I4 and I7 in (8.5), they are higher order
invariants defined among others by the formulas

I4 =
∇αI1
N

, I5 =
∇αI2
N

, I6 =
∇αI3
N

,
(8.6)

I7 =
(∇γI1)

2

N3
, I8 =

(∇γI2)
2

N3
, I9 =

(∇γI3)
2

N3
.

Apart from (8.2), (8.3), (8.4), (8.5), we have the relationship

Γ1
12 = −Γ2

22. (8.7)

(see (6.15) in [3]). Due to (8.2), (8.3), (8.4), (8.5), and (8.7) the only nontrivial
coefficient in (7.17) is Γ1

22. It is used in order to produce the invariant I3 in (8.6):

I3 =
Γ1
22 N

2

M2
(8.8)

(see (6.20) in [3]). The formula (5.5) for I3 is mistyped. The exponent of M in the
denominator is dropped. Here we present the correct formula (8.8).

In item 2 of her classification Theorem 2 Yu. Yu. Bagderina presents two basic
invariants. They are given by means of the formulas

I Bgd

1 =
ΓBgd

0

β Bgd

1 (j Bgd

0 )2
, (8.9)

I Bgd

2 =
5

(j Bgd

0 )2
(

2 j Bgd

1 j Bgd

3 + (j Bgd

2 − j Bgd

0 /6)2
)

. (8.10)
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The first Bagderina’s invariant is simple. Applying (5.27), (5.28), (5.22), we find

I Bgd

1 =
N

3Ω2
. (8.11)

Lemma 8.1. Within the intersection class ShrID1∩BgdET2, i. e. if the conditions
(6.7) are fulfilled, the first Bagderina’s invariant I Bgd

1 in (8.9) is related to the

invariant I2 introduced in [3] according to the formula

I Bgd

1 =
1

3 I2
. (8.12)

Lemma 8.1 and the formula (8.12) in it are immediate from (8.1) and (8.11).
The second Bagderina’s invariant I Bgd

2 in (8.10) is more complicated. Applying
(5.24) and (5.22) to it, we can write the formula (8.10) as follows:

I Bgd

2 =
j Bgd

5

(j Bgd

0 )2
=

j Bgd

5

9Ω2
. (8.13)

The numerator in (8.13) is described by Theorem 7.1. At this moment we know
that the pseudoscalar fields Γ1

11, Γ
2
11, Γ

1
12, Γ

2
12, Γ

1
21, Γ

2
21, Γ

1
22, Γ

2
22 from (7.17) are

expressed through scalar invariants I1, I2, I3, I4, I7 and the field N . Their covariant
derivatives along α and γ are expressed through the covariant derivatives of I1, I2,
I3, I4, I7 and through the covariant derivatives of N .

Higher order covariant derivatives of I1, I2, I3 along α and γ form higher order
invariants in (8.6) and in the recurrent formulas

Ik+3 =
∇αIk
N

, Ik+6 =

(

∇γIk
)2

N3
. (8.14)

that should be applied in triples in some commonly negotiated order (see (6.21)
in [3]). Therefore covariant derivatives of I1, I2, I3, I4, I7 of any order can be
expressed back through the sequence of higher order scalar invariants, through N
and through covariant derivatives of N .

Let’s consider the covariant derivatives along α and γ for N and for the other
two fields M and Ω. In the case of N we have

∇αN = M, ∇γN = −2M Ω . (8.15)

These formulas are derived by direct calculations in our special coordinates intro-
duced through Theorem 5.1. In order to find covariant derivatives of M we express
it through N and the scalar invariant I1 by means of the first formula (8.1):

M = I1 N
2. (8.16)

Differentiating (8.16), we derive

∇αM = (∇αI1)N
2 + 2 I1 N (∇αN) = I4 N

3 + 2 I1 N M,

∇γM = (∇γI1)N
2 + 2 I1N (∇γN) =

√

N3 I7 N
2 − 4 I1 N M Ω .

(8.17)
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In the case of Ω, we use the second formula (8.1). It yields

Ω2 = I2 N. (8.18)

Differentiating (8.18), we derive the following formulas:

∇αΩ =
(∇αI2)N + I2 (∇αN)

2Ω
=

I5 N
2 + I2 M

2Ω
,

∇γΩ =
(∇γI2)N + I2 (∇γN)

2Ω
=

√

N3 I8 N − 2 I2 M Ω

2Ω
.

(8.19)

Looking at (8.15), (8.17), and (8.19), we can formulate the following lemma.

Lemma 8.2. Covariant derivatives of the pseudoscalar fields M , N , and Ω along

pseudovectorial fields α and γ are expressed through the scalar invariants I1, I2,
I3, I4 etc in the recurrent sequence (8.14) and through these fields themselves.

Note that Lemma 8.2 applies not only to first order covariant derivatives, but
to higher order derivatives as well, since the formulas (8.15), (8.17), and (8.19) can
be applied recursively. Combining this lemma with the above considerations just
after the formula (8.13), we derive a theorem.

Theorem 8.1. Within the intersection class ShrID1∩BgdET2, i. e. if the con-

ditions (6.7) are fulfilled, the second Bagderina’s invariant I Bgd

2 in (8.10) can be

expressed through I1, I2, I3 and through higher order invariants I4, I5, I6 etc in

the recurrent sequence (8.14).

The above proof of Theorem 8.1 is half constructive. One can make it con-
structive by continuing the calculations ended with (7.29), though the resulting
expression could be enormously large.

9. Conclusions.

Comparing the classification of the equations (1.1) suggested by Yu. Yu. Bagde-
rina in [5] with the previously known classification suggested in [3] we find that
the case of intermediate degeneration from [3] does not completely coincide with
the corresponding item 2 of Bagderina’s classification theorem in [5]. So, formally,
Bagderina’s classification is new. However, the case of intermediate degeneration
from [3] has a substantial intersection with item 2 in Bagderina’s classification.
Denoting the intersection class through ShrID1∩BgdET2, we compared the two
classifications within this intersection class. As a result we have found that most
basic structures and basic formulas from Bagderina’s paper [5] do coincide or are
very closely related to those in [3] and [4], though they are given in different nota-
tions (see Lemma 5.1, Lemma 5.2, Lemma 5.3, Lemma 5.4, Lemma 5.5, Lemma 5.7,
Lemma 6.1, Lemma 6.2, and Lemma 8.1).

In item 2 of her Teorem 2 in [5] Yu. Yu. Bagderina presents two basic invariants
I Bgd

1 and I Bgd

2 , while in [3] three basic invariants I1, I2, and I3 were presented.
Yu. Yu. Bagderina claims that her two invariants are sufficient for expressing all
of the invariants, including I1, I2, I3, through them and through their invariant
derivatives. However, in [5] there are no explicit formulas expressing I1, I2, I3
through I Bgd

1 and I Bgd

2 . Some formulas of this sort are given in [13], but again for
the case Ω = 0, which is outside our present intersection class ShrID1∩BgdET2.
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In the present paper we solve the basic invariants problem from our side by show-
ing that both Bagderina’s invariants I Bgd

1 and I Bgd

2 can be expressed through the in-
variants I1, I2, I3 and through proper invariant derivatives of them (see Lemma 8.1
and Theorem 8.1 above). It would be best if Yu. Yu. Bagderina presents some
explicit formulas or an algorithm for expressing I1, I2, I3 through her invariants
I Bgd

1 and I Bgd

2 in the intersection class ShrID1∩BgdET2. Otherwise her claim that
her invariants are basic is open to question.
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