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UMBILICAL AND ZERO CURVATURE EQUATIONS

IN A CLASS OF SECOND ORDER ODE’S

Ruslan Sharipov

Abstract. The class of second order ODE’s cubic with respect to the first order de-
rivative is considered. Using geometric structures associated with these equations, the
subclasses of umbilical equations, zero mean curvature equations, and zero Gaussian
curvature equations are defined. Zero mean curvature equations are studied within
the framework of the first case of intermediate degeneration with the stress on their
pseudoscalar and scalar invariants.

1. Introduction.

Since the epoch of classical papers (see [1] and [2]) the class of second order
differential equations cubic with respect to the first order derivative

y′′ = P (x, y) + 3Q(x, y) y′ + 3R(x, y) (y′)2 + S(x, y) (y′)3 (1.1)

attracted the attention due to rich geometric structures associated with equations
of this class. This class is closed with respect to transformations of the form

{

x̃ = x̃(x, y),

ỹ = ỹ(x, y),
(1.2)

which can be interpreted as changes of local curvilinear coordinates in R2 or in
some two-dimensional manifolds. About 19 years ago in [3] and [4] the equations
(1.1) were classified using their scalar invariants derived from geometric structures
associated with them. They were subdivided into nine subclasses closed with
respect to transformations of the form (1.2). Here is the list of these classes, which
are called cases in [3] and [4]:

— the case of general position (the richest class);
— the first case of intermediate degeneration;
— the second case of intermediate degeneration;
— the third case of intermediate degeneration;
— the fourth case of intermediate degeneration;
— the fifth case of intermediate degeneration;
— the sixth case of intermediate degeneration;
— the seventh case of intermediate degeneration;
— the case of maximal degeneration (the smallest class);
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The case of general position was previously studied in [5] using the same geometric
methods as in [3] and [4]. Some time later than [3] and [4] other approaches to classi-
fications of the equations (1.1) were considered (see [6–10]) and Yu.Yu.Bagderina’s
classification in [11]).

In this paper we define three geometric subclasses of the equations (1.1) that
can potentially intersect each of the last eight classes in the above classification
and carefully study one of them in the first case of intermediate degeneration.

2. Some notations and definitions.

Transformations of the form (1.2) are interpreted as changes of local coordinates.
They are assumed to be locally invertible. The inverse transformations for them
are written similarly in the following form:

{

x = x̃(x̃, ỹ),

y = ỹ(x̃, ỹ).
(2.1)

Like in [3–5] and [12], here we use dot index notations for partial derivatives, e. g.
having two functions f(x, y) and g(x̃, ỹ) we write

fp.q =
∂p+qf

∂xp ∂yq
, gp.q =

∂p+qg

∂x̃p ∂ỹq
. (2.2)

Then we write the Jacoby matrices of the direct and inverse transformations (1.2)
and (2.1) in terms of the above notations (2.2):

S =

∥

∥

∥

∥

x1.0 x0.1

y1.0 y0.1

∥

∥

∥

∥

, T =

∥

∥

∥

∥

x̃1.0 x̃0.1

ỹ1.0 ỹ0.1

∥

∥

∥

∥

. (2.3)

In differential geometry the Jacoby matrices (2.3) are called the direct and inverse
transition matrices respectively (see [13]).

Tensorial and pseudotensorial fields in local coordinates are presented as arrays
of functions whose arguments are local coordinates x, y or x̃, ỹ respectively. These
arrays of functions are called their components. They obey some definite transfor-
mation rules under a change of local coordinates.

Definition 2.1. A pseudotensorial field of the type (r, s) and weight m is an array

of functions F i1... ir
j1... js

which under the change of coordinates (1.2) transforms as

F i1... ir
j1... js

= (detT )m
∑

p1...pr

q1...qs

Si1
p1

. . . Sir
pr

T q1
j1

. . . T qs
js

F̃ p1... pr

q1... qs . (2.4)

Tensorial fields are those pseudotensorial fields whose weight m in (2.4) is zero.
The prefix “pseudo” always indicates the nonzero weight m 6= 0.

Tensorial and pseudotensorial fields of the type (1, 0) are called vectorial and
pseudovectorial fields. Tensorial and pseudotensorial fields of the type (0, 1) are
called covectorial and pseudocovectorial fields. And finally, scalar and pseudoscalar
fields are those fields whose type is (0, 0).
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Definition 2.2. Tensorial and pseudotensorial fields whose components are ex-
pressed through y′, through the coefficients P , Q, R, S of the equation (1.1), and
through their partial derivatives are called tensorial and pseudotensorial invariants
of this equation respectively.

3. Some basic structures.

Each equation of the form (1.1) is associated with two pseudocovectorial fields
α and β and with one pseudoscalar field F . The components of α are

α1 = A = P0.2 − 2Q1.1 +R2.0 + 2P S1.0 + S P1.0−

− 3P R0.1 − 3RP0.1 − 3QR1.0 + 6QQ0.1,

α2 = B = S2.0 − 2R1.1 +Q0.2 − 2S P0.1 − P S0.1+

+ 3S Q1.0 + 3QS1.0 + 3RQ0.1 − 6RR1.0.

(3.1)

The weight of the field α with the components (3.1) is equal to 1 (see [3–5]). The
components of β are expressed through A and B taken from (3.1):

β1 = −H, β2 = G, (3.2)

where G and H are given by the formulas

G = −BB1.0 − 3AB0.1 + 4BA0.1 + 3S A2 − 6RBA+ 3QB2,

H = −AA0.1 − 3BA1.0 + 4AB1.0 − 3P B2 + 6QAB − 3RA2.
(3.3)

The weight of the field β with the components (3.2) is equal to 3 (see [3–5]).
In R2 and in any two-dimensional manifold there are two pseudotensorial fields

with constant components. They are denoted by the same symbol d and are given
by the same skew-symmetric matrix in any local coordinates:

dij =

∥

∥

∥

∥

0 1
−1 0

∥

∥

∥

∥

, d ij =

∥

∥

∥

∥

0 1
−1 0

∥

∥

∥

∥

. (3.4)

The weight of the first field in (3.4) is −1, the weight of the second field is 1. The
skew-symmetric fields (3.4) here play the same role as metric tensors in metric
geometry. They are used for raising and lowering indices of other fields. Raising
the indices of α and β, we get two pseudovectorial fields

αi =

2
∑

k=1

d ik αk, βi =

2
∑

k=1

d ik βk. (3.5)

The weights of the fields α and β with the components (3.5) are 2 and 4 respectively.
These pseudovectorial fields are denoted with the same symbols α and β as the
pseudocovectorial fields in (3.1) and (3.2). The formulas (3.5) yield

α1 = B, α2 = −A, (3.6)

β1 = G, β2 = H. (3.7)
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The pseudoscalar field F mentioned above is the third field associated with any
equation of the form (1.1). It is expressed through the quantities A, B, G, H in
(3.1), (3.2), (3.3), (3.6), (3.7) by means of the formulas

3F 5 =

2
∑

i=1

αi β
i = −

2
∑

i=1

βi α
i = AG+BH. (3.8)

The weight of the field F introduced by (3.8) is equal to 1 (see [3–5]). As for the
formula (3.8) itself, it can be written in a more explicit form:

F =
(

ABA0.1 +BAB1.0 −A2 B0.1 −B2 A1.0−

− P B3 + 3QAB2 − 3RA2 B + S A3

)1/5

.
(3.9)

The case of general position is introduced by the condition F 6= 0 in terms of
the field (3.9) (see [3–5]). This condition is equivalent to

α 6= 0, β 6= 0, α ∦ β. (3.10)

The case of maximal degeneration is opposite to (3.10). It is given by the
condition α = 0, which implies β = 0 and F = 0. As for the cases of intermediate

degeneration, they are introduced by the conditions

α 6= 0, α ‖ β, (3.11)

which imply F = 0. Each particular case of of intermediate degeneration is specified
by some auxiliary conditions added to (3.11) (see [3, 4]).

4. Auxiliary structures common for

all cases of intermediate degeneration.

As soon as the conditions (3.11) are fulfilled, some new geometric structures
associated with the equations (1.1) arise. They consists of two pseudoscalar field
M and N , a pseudocovectorial field γ, and connection components Γ k

ij . The pseu-
doscalar field N is introduced as a factor relating two parallel pseudocovectorial
fields one of which is nonzero. It is given by the following formula:

β = 3N α. (4.1)

In terms of the components of α and β the formula (4.1) yields

N =
G

3B
, N = − H

3A
. (4.2)

The first formula applies in the case B 6= 0, the second one in the case A 6= 0. If
both A and B are nonzero, both formulas are applicable. The quantities A and B
cannot vanish simultaneously since they are components of the field α and α 6= 0
in all cases of intermediate degeneration (see (3.11)). The weight of the field N in
(4.1) and (4.2) is equal to 2.
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The pseudoscalar field M is also introduced by means of two formulas one of
which is for the case B 6= 0 and the second one is for A 6= 0 (see [4]):

M = −12AN (AS −B0.1)

5B
−AN0.1 +

24

5
AN R−

−6

5
N A0.1 −

6

5
N B1.0 +BN1.0 −

12

5
BN Q,

(4.3)

M = −12BN (B P +A1.0)

5A
+BN1.0 +

24

5
BN Q+

+
6

5
N B1.0 +

6

5
N A0.1 −AN0.1 −

12

5
AN R.

(4.4)

The weight of the field M in (4.3) and (4.4) is equal to 4.
The pseudocovectorial field γ is introduced by two pairs of formulas for its com-

ponents, one pair is for B 6= 0 and the other is for A 6= 0 (see [4]):

γ1 =
6AN (AS −B0.1)

5B2
− 18N AR

5B
+

+
6N (A0.1 +B1.0)

5B
−N1.0 +

12

5
N Q− 2ΩA,

(4.5)

γ2 = −6N (AS −B0.1)

5B
−N0.1 +

6

5
N R − 2ΩB. (4.6)

The formulas (4.5) and (4.6) are used if B 6= 0. If A 6= 0, we write:

γ1 =
6N (B P +A1.0)

5A
−N1.0 −

6

5
N Q− 2ΩA, (4.7)

γ2 = −6BN (B P +A1.0)

5A2
+

18N BQ

5A
+

+
6N (B1.0 +A0.1)

5A
−N0.1 −

12

5
N R− 2ΩB.

(4.8)

The weight of the field γ with the components (4.5), (4.6), (4.7), (4.8) is 2. Raising
indices in these formulas, we get a pseudovectorial field denoted by the same symbol:

γi =

2
∑

k=1

d ik γk. (4.9)

The formula (4.9) can be written in a more explicit form:

γ1 = C = γ2, γ2 = D = −γ1. (4.10)

Here C and D are notations for the components of the pseudovectorial field γ. Its
weight is 3. The formula (4.9) is an analog of the formulas (3.5), while the formulas
(4.10) are analogous to the formulas (3.6) and (3.7).
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The field M given by the formulas (4.3) and (4.4) is related to the fields α and
γ by means of the formulas similar to (3.8):

M =
2

∑

i=1

αi γ
i = −

2
∑

i=1

γi α
i = AC +BD. (4.11)

The connection components Γ k
ij constitute the fourth auxiliary structure common

for all cases of intermediate degeneration. They are given by the formula

Γ k
ij = θkij −

ϕi δ
k
j + ϕj δ

k
i

3
, (4.12)

where δkj and δki are Kronecker deltas. The quantities θkij in (4.12) are given by the
components of a fully symmetric array θijk upon raising one of its indices:

θkij =

2
∑

r=1

dkr θrij . (4.13)

The components θrij of the array θ in (4.13) are given explicitly:

θ111 = P, θ112 = θ121 = θ211 = Q,
(4.14)

θ122 = θ212 = θ221 = R, θ222 = S.

In addition to θkij defined through (4.13) and (4.14), the quantities ϕi and ϕj are
used in (4.12). They are given by the formulas

ϕ1 = −3A
AS −B0.1

5B2
− 3

A0.1 +B1.0 − 3AR

5B
− 6

5
Q,

ϕ2 = 3
AS −B0.1

5B
− 3

5
R.

(4.15)

The formulas (4.15) apply in the case B 6= 0. If A 6= 0, we use the formulas

ϕ1 = −3
B P +A1.0

5A
+

3

5
Q,

ϕ2 = 3B
BP +A1.0

5A2
− 3

B1.0 +A0.1 + 3BQ

5A
+

6

5
R.

(4.16)

If both A and B are nonzero, then both formulas (4.15) and (4.16) are applicable.
The quantities ϕ1 and ϕ2 do not form a pseudotensorial field. They are used for
producing the connection components (4.12).

5. Derived structures common for all

cases of intermediate degeneration.

The auxiliary structures given by the fields M , N , γ and the connection com-
ponents Γ k

ij are complemented by some more structures common for all cases of
intermediate degeneration. It is known that each affine connection produces
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its curvature tensor (see [13] and [14]). The well-known formula expressing the
curvature tensor through the connection components is written as

Rk
rij =

∂Γ k
jr

∂xi
− ∂Γ k

ir

∂xj
+

2
∑

q=1

Γ k
iqΓ

q
jr −

2
∑

q=1

Γ k
jqΓ

q
ir. (5.1)

The type of the field with the components (5.1) is (1, 3), its weight is zero, i. e. it
is a tensorial field.

The curvature tensor R in (5.1) has one upper index and three lower indices.
Contracting it with respect to the upper index and the fist lower index, we get

ωij =
2

∑

k=1

Rk
kij . (5.2)

The quantities (5.2) are components of a skew-symmetric tensorial field. The quan-
tities (5.2) were first introduced through the quantities ϕi in [3]:

ωij =
∂ϕi

∂xj
− ∂ϕj

∂xi
. (5.3)

One can verify that (5.3) yields the same result as (5.2). The quantities (5.3) then
were used in order to define a pseudoscalar field Ω (see [3, 4]):

Ω =
5

6

2
∑

i=1

2
∑

j=1

ωij d
ij . (5.4)

The weight of the field Ω in (5.4) is equal to 1. Here are explicit formulas for Ω:

Ω =
2AB0.1(AS −B0.1)

B3
+

(2A0.1 − 3AR)B0.1

B2
+

+
(B1.0 − 2A0.1)AS

B2
+

AB0.2 −A2 S0.1

B2
− A0.2

B
+

+
3A0.1 R+ 3AR0.1 −A1.0 S − AS1.0

B
+R1.0 − 2Q0.1,

(5.5)

Ω =
2BA1.0(B P +A1.0)

A3
− (2B1.0 + 3BQ)A1.0

A2
+

+
(A0.1 − 2B1.0)B P

A2
− BA2.0 +B2 P1.0

A2
+

B2.0

A
+

+
3B1.0 Q + 3BQ1.0 −B0.1 P −B P0.1

A
+Q0.1 − 2R1.0.

(5.6)

The formula (5.5) applies in the case B 6= 0. If A 6= 0, we apply the formula (5.6).
Note that we use the formula (5.1) in two-dimensional case. In two-dimensional

case the curvature tensor of any connection is presented as

Rk
qij = Rk

q dij , where Rk
q =

1

2

2
∑

i=1

2
∑

j=1

Rk
qij d

ij . (5.7)
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The type of the pseudotensorial field R with the components Rk
q in (5.7) is (1, 1),

its weight is 1. The field R is a pseudooperator field. There are two pseudoscalar
fields associated with the field R — its trace tr(R) and its determinant det(R). The
trace tr(R) is given by the following formula:

tr(R) =
3

5
Ω. (5.8)

Unlike tr(R) in (5.8), the determinant det(R) is a new field. It was not studied
in [3, 4], though the curvature tensor (5.1) and the pseudooperator field R from
(5.7) were considered in [4]. The eigenvalues of the pseudooperator field R were
also considered in [4]. They are given by the following characteristic equation:

λ2 − tr(R)λ+ det(R) = 0. (5.9)

Let’s denote through D the discriminant of the quadratic equation (5.9). This
discriminant is calculated by means of the following formula:

D = tr(R)2 − 4 det(R) =
9

25
Ω2 − 4 det(R). (5.10)

The determinant det(R) and the discriminant D in (5.10) both are pseudoscalar
fields of the weight 2. Both of these two pseudoscalar fields are defined in all cases
of intermediate degeneration.

6. Umbilical and zero curvature equations.

The term umbilical points in metric geometry of two-dimensional surfaces in
a three-dimensional Euclidean space denotes those points of a surface where two
principal curvatures λ1 and λ2 are equal to each other (see [15]). The principal
curvatures are eigenvalues of a symmetric operator defined by the first fundamental
form and the second fundamental form of a surface (see [16]). Using this analogy,
we introduce the following definition of umbilical equations of the form (1.1).

Definition 6.1. An umbilical equation of the form (1.1) is an equation of that
form whose discriminant field D in (5.10) is identically equal to zero.

The equality D = 0 for the discriminant field (5.10) means that two eigenval-
ues λ1 and λ2 of the curvature pseudooperator field R solving the characteristic
equation (5.9) are equal to each other thus supporting the above analogy with
two-dimensional surfaces.

In [12] Yu.Yu. Bagderina’s classification from [11] was compared with the pre-
viously existing classification from [3, 4]. Among other results in [12] the following
equality for Bagderina’s pseudoscalar field j Bgd

5 was derived:

j Bgd

5 = −125 det(R) +
45

4
Ω2. (6.1)

Comparing (6.1) with (5.10), we see that

j Bgd

5 =
125

4
D. (6.2)
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The field j Bgd

5 is defined by Yu.Yu. Bagderina on page 27 of her paper [11]. It is
used in item 2 of her Theorem 2 in order to define one of the two basic invariants:

I Bgd

2 =
j Bgd

5

(j Bgd

0 )2
. (6.3)

The same field j Bgd

5 is used in item 4 of Yu.Yu. Bagderina’s Theorem 2 in [11] again
in order to define one of the two her basic invariants:

I Bgd

2 =
j Bgd

5

(j Bgd

1 )1/2
. (6.4)

Along with its very restrictive use in (6.3) to (6.4), the field j Bgd

5 from (6.2) is used
in the following lemma.

Lemma 6.1. Umbilical equations constitute that very class where Yu.Yu. Bagde-

rina’s pseudoscalar field j Bgd

5 is identically zero: j Bgd

5 = 0.

Apart from λ1 = λ2, one can write two other relationships for principal curva-
tures λ1 and λ2, which are symmetric with respect to them:

λ1 + λ2

2
= 0, λ1 λ2 = 0. (6.5)

In metric geometry the expressions in the left hand sides of the formulas (6.5) are
called mean curvature and Gaussian curvature respectively (see [17] and [18]). Since

λ1 + λ2

2
=

tr(R)

2
, λ1 λ2 = det(R), (6.6)

using the analogy to metric geometry, we can formulate two definitions.

Definition 6.2. A zero mean curvature equation of the form (1.1) is an equation
of that form whose trace field tr(R) is identically equal to zero.

Definition 6.3. A zero Gaussian curvature equation of the form (1.1) is an equa-
tion of that form whose determinant field det(R) is identically equal to zero.

7. Zero mean curvature equations

in the first case of intermediate degeneration.

Comparing (5.8) with (6.6) and taking into account Definition 6.2, we see that
zero mean curvature equations are given by the condition

Ω = 0. (7.1)

The first case of intermediate degeneration is defined by the conditions

α 6= 0, F = 0, M 6= 0 (7.2)

(see [3, 4]). The first two of the conditions (7.2) follow from (3.11). They are
common for all cases of intermediate degeneration. The third condition is specific
to the first case of intermediate degeneration. Due to (4.11) it implies α ∦ γ.
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Combining (7.1) and (7.2), we find that zero mean curvature equations in the
first case of intermediate degeneration are given by the following conditions:

α 6= 0, F = 0, M 6= 0, Ω = 0. (7.3)

Now let’s refer to [12] where two classifications from [3, 4]) and [11] were compared.
As a result of this comparison we have the following relationships

β Bgd

1 = α1 J Bgd

0 = −F 5, j Bgd

1 =
5

2
M, j Bgd

0 = −3Ω . (7.4)

Comparing (7.3) and (7.4) with item 4 of Theorem 2 in [11], we can formulate the
following comparison theorem.

Theorem 7.1. Bagderina’s type four equations from [11] coincide with the subclass

of zero mean curvature equations within the first case of intermediate degeneration

in the classification from [3, 4].

In terms of the notations introduced in the table on page 15 of [12] we have

BgdET4 = ShrID1 ∩ BgdET4 ⊂ ShrID1. (7.5)

The class ShrID1∩BgdET4 in (7.5) and in Theorem 7.1 is complementary to the
intersection class ShrID1∩BgdET2 considered in [12]:

ShrID1 =
(

ShrID1 ∩ BgdET4
)

∪
(

ShrID1 ∩ BgdET2
)

. (7.6)

Due to (7.6) the class of equations of the first case of intermediate degeneration
ShrID1 does not intersect with the classes other than BgdET2 and BgdET4 in
Bagderina’s classification from [11].

Relying on Theorem 7.1, below we continue studying the intersection class
ShrID1∩BgdET4. In [11] Yu. Yu.Bagderina defines two invariant differentiation
operators. The first of them is given by the formula

D Bgd

1 =
β Bgd

2

(µBgd

1 )2
∂

∂x
− β Bgd

1

(µBgd

1 )2
∂

∂y
. (7.7)

The quantity µBgd

1 in (7.7) is given by one of the formulas (2.12) from [11]:

µBgd

1 =
(

j Bgd

1

)1/4
. (7.8)

Comparing the formula (7.8) with (7.4), we can write

µBgd

1 =
4

√

5M

2
. (7.9)

The quantities β Bgd

1 and β Bgd

2 in (7.7) coincide with the components (3.1) of the
pseudoscalar field α (see Lemma 3.2 in [19] or Lemma 5.1 in [12]):

β Bgd

1 = α1 = A, β Bgd

2 = α2 = B. (7.10)
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Raising indices in (7.10) according to (3.5) and then applying (7.10) and (7.9) to
(7.7), we derive the following formula for D Bgd

1 :

D Bgd

1 =

√

2

5M

(

α1 ∂

∂x
+ α2 ∂

∂y

)

. (7.11)

Lemma 7.1. If the conditions (7.3) are fulfilled, i. e. within the intersection class

ShrID1∩BgdET4 coinciding with the class of Bagderina’s type four equations,

Bagderina’s invariant differentiation operator D Bgd

1 is expressed through the pseu-

dovectorial field α and pseudoscalar field M from [3] by means of the formula (7.11).

The use of non-integer power exponents with even denominators by Bagderina in
(6.4) and (7.8) is a bad practice. In order to avoid such a practice in [3, 4] covariant
differentiation operators were considered instead of invariant differentiations. They
are produced by pseudovectorial fields according to the following patterns:

∇α = α1 ∇1 + α2 ∇2, ∇γ = γ1∇1 + γ2 ∇2 (7.12)

(see (6.13) in [3] and (5.2) in [4]). The covariant derivatives in (7.12) extend partial
derivatives from (7.7). They are defined by means of the formula

∇kF
i1... ir
j1... js

=
∂F i1... ir

j1... js

∂xk
+

r
∑

n=1

2
∑

vn=1

Γ in
k vn

F i1... vn... ir
j1... js

−

−
s

∑

n=1

2
∑

wn=1

Γwn

k jn
F i1... ir
j1... wn... js

+mϕk F
i1... ir
j1... js

(7.13)

(see (6.11) in [3] or (4.23) in [4]). The covariant derivative ∇k in (7.13) is applied
to a pseudotensorial field of the type (r, s) and the weight m. The connection
components Γ k

ij in (7.13) are defined by (4.12). They are canonically associated

with a given equation (1.1) in all cases of intermediate degeneration.
Covariant differentiation operators like (7.12) are preferable with respect to in-

variant differentiation operators like (7.7). They can be applied to any pseudoten-
sorial invariants, not only to scalar ones. Fortunately invariant differentiation op-
erators can be extended to covariant differentiations. In the case of (7.11) we have

D Bgd

1 =

√

2

5M

(

α1 ∇1 + α2 ∇2

)

=

√

2

5M
∇α. (7.14)

Due to (7.14) we can reformulate Lemma 7.1 as follows.

Lemma 7.2. If the conditions (7.3) are fulfilled, i. e. within the intersection class

ShrID1∩BgdET4 coinciding with the class of Bagderina’s type four equations,

Bagderina’s invariant differentiation operator D Bgd

1 is expressed through the pseu-

dovectorial field α and pseudoscalar field M from [3] by means of the formula (7.14).

The second invariant differentiation operator D Bgd

1 introduced by Yu. Yu.Bagde-
rina in [11] upon replacing partial derivatives by covariant derivatives is

D Bgd

2 =

(

µBgd

2 β Bgd

2 − 3
µBgd

1

β Bgd

1

)

∇1 − µBgd

2 β Bgd

1 ∇2. (7.15)
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Note that the formula (6.14) for D Bgd

2 in [12] is mistyped. The author apologizes
for this typo and presents the correct formula (7.15).

The quantity µBgd

2 in (7.15) is given by one of the formulas (2.12) in [11]:

µBgd

2 =
5 j Bgd

2

2
(

j Bgd

1

)3/4
(7.16)

The quantity j Bgd

2 in (7.16) is expressed through the coefficients of the equation
(1.1) by means of a series of auxiliary notations (see [11]). We reproduce them here
without exceptions and reductions for the sake of completeness:

j Bgd

2 =
1

β Bgd

1

(

δ Bgd

20 − β Bgd

2

β Bgd

1

δ Bgd

10

)

+

+
γBgd

10

5 (β Bgd

1 )2

(

7
β Bgd

2

β Bgd

1

γBgd

10 − 6 γBgd

20 − γBgd

11

)

,

j Bgd

3 =
3

5

(

δ Bgd

10

(β Bgd

1 )3
− 6 (γBgd

10 )2

5 (β Bgd

1 )4

)

,

(7.17)

δ Bgd

10 = ∂xγ
Bgd

10 − 2QγBgd

10 + P (γBgd

20 + γBgd

11 )− 5αBgd

0 β Bgd

1 ,

δ Bgd

20 = ∂xγ
Bgd

20 − RγBgd

10 + P γBgd

21 − 4αBgd

1 β Bgd

1 − αBgd

0 β Bgd

2 ,
(7.18)

γBgd

10 = ∂xβ
Bgd

1 −Qβ Bgd

1 + P β Bgd

2 ,

γBgd

11 = ∂xβ
Bgd

2 −Rβ Bgd

1 +Qβ Bgd

2 ,

γBgd

20 = ∂yβ
Bgd

1 −Rβ Bgd

1 +Qβ Bgd

2 ,

γBgd

21 = ∂yβ
Bgd

2 − S β Bgd

1 +Rβ Bgd

2 ,

(7.19)

αBgd

0 = Q1.0 − P0.1 + 2P R− 2Q2,

αBgd

1 = R1.0 −Q0.1 + P S −QR,

αBgd

2 = S1.0 −R0.1 + 2QS − 2R2.

(7.20)

We do no provide Bagderina’s expressions for j Bgd

1 , β Bgd

1 , β Bgd

2 since they can be
calculated using (7.4) and (7.10). Using the formulas (7.16), (7.17), (7.18), (7.19),
(7.20) and applying them to (7.15), one can derive the following formula for D Bgd

2 :

D Bgd

2 = −3
4

√

5

2M3

(

γ1 ∇1 + γ2 ∇2

)

= −3
4

√

5

2M3
∇γ . (7.21)

Lemma 7.3. If the conditions (7.3) are fulfilled, i. e. within the intersection class

ShrID1∩BgdET4 coinciding with the class of Bagderina’s type four equations,

Bagderina’s invariant differentiation operator D Bgd

2 is expressed through the pseu-

dovectorial field γ and pseudoscalar field M from [3] by means of the formula (7.21).

Lemmas 7.1, 7.2, and 7.3 are proved by direct calculations using some symbolic
algebra package. In my case that was Maple1.

1 Maple is a trademark of Waterloo Maple Inc.
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8. Scalar invariants.

The condition Ω = 0 in (7.3) does not specify a special subcase within the first
case of intermediate degeneration. The subcase Ω = 0 is treated regularly, though
one of the three invariants I1, I2, I3 from [3, 4]) does vanish:

I2 =
Ω2

N
= 0. (8.1)

The invariant I1 does not vanish due to (7.3). It is given by the formula

I1 =
M

N2
. (8.2)

The third invariant I3 is introduced through the coefficients in the expansions

∇αα = Γ1
11 α+ Γ2

11 γ, ∇αγ = Γ1
12 α+ Γ2

12 γ,
(8.3)

∇γα = Γ1
21 α+ Γ2

21 γ, ∇γγ = Γ1
22 α+ Γ2

22 γ

(see (6.13) in [3] or (5.2) in [4]). As it was shown in [3], only one of the coefficients
Γ1
11, Γ

2
11, Γ

1
12, Γ

2
12, Γ

1
21, Γ

2
21, Γ

1
22, Γ

2
22 does matter. This is the coefficient Γ1

22. It
defines the invariant I3 by means of the formula

I3 =
Γ1
22 N

2

M2
(8.4)

(see (6.20) in [3]). The coefficients Γ2
11 and Γ1

21 in (8.3) are equal to zero

Γ2
11 = 0, Γ1

21 = 0. (8.5)

The coefficients Γ1
11 and Γ2

21 are expressed through the pseudoscalar field N :

Γ1
11 = −3

5
N, Γ2

21 = −3

5
N. (8.6)

The coefficients Γ2
12, Γ

2
22, and Γ1

12 obey more complicated relationships

I1 Γ
2
12 = I4 N +

3

5
I1 N + 2 I21 N, (8.7)

(

I1 Γ
2
22

)4
+
(

I7 N
3
)2

+
(

16 I2N
3 I1

4
)2

=

= 32 I7 N
6 I2 I1

4 + 2
(

I7 N
3 + 16 I2 N

3 I1
4
) (

I1 Γ
2
22

)2
,

(8.8)

Γ1
12 = −Γ2

22. (8.9)

(see (6.22), (6.23), (6.15) and in [3] or (5.6) and (5.7) in [4]). Unfortunately the
formula (6.22) in [3] is mistyped and then copied to (5.6) in [4]. The minus signs in
the right hand side of this formula should be altered for pluses. The formula (8.7)
here is a corrected version of this formula.
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The quantities I4 and I7 in (8.7) and (8.8) are higher order invariants. They are
taken from the following formulas:

I4 =
∇αI1
N

, I5 =
∇αI2
N

, I6 =
∇αI3
N

,
(8.10)

I7 =
(∇γI1)

2

N3
, I8 =

(∇γI2)
2

N3
, I9 =

(∇γI3)
2

N3
.

More higher order invariants can be produced recursively

Ik+3 =
∇αIk
N

, Ik+6 =

(

∇γIk
)2

N3
. (8.11)

The recurrent formulas (8.11) should be applied in triples in some commonly nego-
tiated order (see (6.21) in [3]). As a result we shall have an infinite series of scalar
invariants associated with the equation (1.1).

In [11] Yu. Yu. Bagderina introduces her own basic invariants for the class
BgdET4 coinciding with the intersection class ShrID1∩BgdET4 and given by the
conditions (7.3). Her first invariant I Bgd

1 is given by the formula

I Bgd

1 =
ΓBgd

0

β Bgd

1 (j Bgd

1 )1/2
. (8.12)

The fields β Bgd

1 and j Bgd

1 in (8.12) are taken from (7.10) and (7.4). As for the field
ΓBgd

0 , in [19] it was shown that the ΓBgd

0 coincides with the first component of the
pseudocovectorial field β in (3.2) (see Lemma 3.5 in [19] or Lemma 5.2 in [12]).
Therefore from (4.1) or from (4.2) in our present case we derive

ΓBgd

0

β Bgd

1

= 3N. (8.13)

Applying (8.13), (7.4) and (8.2) to (8.12), we derive the following formula:

I Bgd

1 =

√

18N2

5M
=

√

18

5 I1
. (8.14)

The following lemma is formulated for further references.

Lemma 8.1. If the conditions (7.3) are fulfilled, i. e. within the intersection class

ShrID1∩BgdET4 coinciding with the class of Bagderina’s type four equations,

Bagderina’s basic invariant I Bgd

1 is expressed through the invariant I1 from [3] by
means of the formula (8.14).

The formula in the right hand side of (8.14) is in agreement with the first formula
(7.2) presented by Yu. Yu. Bagderina in [20], where she compares her results with
the previously known results from [3–5]. The formula (8.1) is evidently in agreement
with the second formula (7.2) from [20]. The third formula (7.2) in [20] is more
complicated. We shall consider it below.

Apart from (7.2), there are the following comparison formulas in [20]:

A = β Bgd

1 , B = β Bgd

2 , F 5 = −J Bgd

0 , G = ΓBgd

1 , H = −ΓBgd

0 . (8.15)
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The formulas (8.15) are in agreement with the results from [19] and [12] (see
Lemma 3.2, Lemma 3.3, and Lemma 3.5 in [19]). The formulas

N =
ΓBgd

0

3 β Bgd

1

, Ω = − j Bgd

0

3
, M =

2

5
j Bgd

1 (8.16)

are also presented in [20]. The formulas (8.16) are in agreement with the formulas
(8.13) and (7.4) in the present paper. The formulas (7.1) from [20] look like

F = 0 A 6= 0, Ω = 0, M 6= 0. (8.17)

The formulas (8.17) are equivalent to the condition (7.3). They define the class
BgdET4 coinciding with the intersection class ShrID1∩BgdET4.

Immediately after the formulas (7.1) in [20] we see the formulas

γ1 =
2 j Bgd

1

5 β Bgd

1

− β Bgd

2 j Bgd

2

3
, γ2 =

β Bgd

1 j Bgd

2

3
. (8.18)

The formulas (8.18) are valid. They are verified by direct calculations.
Now we can proceed to the third formula (7.2) in [20]. It is written as follows:

I3 =
I Bgd

12

18
+

I Bgd

2

90 I Bgd

1

(

5 I Bgd

11 − 3
(

I Bgd

1

)2 − 6
)

+
5

3
. (8.19)

The invariants I Bgd

12 and I Bgd

11 in (8.19) are calculated by applying the invariant
differentiation operator D Bgd

1 from [11] to I Bgd

2 and I Bgd

1 respectively:

I Bgd

12 = D Bgd

1 (I Bgd

2 ), I Bgd

11 = D Bgd

1 (I Bgd

1 ). (8.20)

Using Lemma 7.2, the formulas (8.20) can be rewritten as

I Bgd

12 =

√

2

5M
∇αI

Bgd

2 , I Bgd

11 =

√

2

5M
∇αI

Bgd

1 . (8.21)

The invariants I Bgd

2 and I Bgd

1 in (8.20) and (8.21) are two basic invariants defined
by Yu. Yu. Bagderina in [11] in item 4 of her Theorem 2. The invariant I Bgd

2 is
given by the formula (6.4), the invariant I Bgd

1 is given by the formula (8.12). We can
apply the formula (6.1) in order to derive an explicit formula for j Bgd

5 in (6.4). The
formulas (6.1), (6.4), (8.14), and (8.21) are sufficient in order to verify the formula
(8.19) by means of direct computations. It turns out that the formula (8.19) is
written for the case where I3 is redefined as

I3 → I3
I1

=
Γ1
22

M
. (8.22)

Probably (8.22) would be a better choice for I3. But, historically in [3, 4] it was
introduced in its present form (8.4). We need to rewrite the formula (8.19) as

I3
I1

=
I Bgd

12

18
+

I Bgd

2

90 I Bgd

1

(

5 I Bgd

11 − 3
(

I Bgd

1

)2 − 6
)

+
5

3
. (8.23)
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The formula (8.23) is valid. It is verified by means of direct computations.
Looking at the formula (8.23) and at few other formulas in [20] expressing I4, I6,
I7, and I10 through her invariants, Yu.Yu. Bagderina detected that they do not
comprise her basic invariant I Bgd

2 , but only some derivatives of I Bgd

2 . As a result
she issued a criticism saying that the invariants from [3, 4] are impractical for the
equivalence problem. However, she omitted the invariant I9 in the sequence I4, I6,
I7, and I10. The invariants I5 and I8, which are also omitted, are zero due to I2 = 0
(see (8.10) and (8.1)). But the invariant I9 is nonzero. If Yu.Yu. Bagderina would
not omit this invariant, she would have the following formula:

√

I9 = −
√
3

45

I Bgd

212
(

I Bgd

1

)3/2
−

√
3

225

(

5 I Bgd

11 − 3
(

I Bgd

1

)2 − 6
)

I Bgd

22
(

I Bgd

1

)5/2
+

+

(
√
3

450

(

15 I Bgd

11 + 10
(

I Bgd

1

)2 − 6
)

I Bgd

21
(

I Bgd

1

)7/2
−

√
3

45

I Bgd

121
(

I Bgd

1

)5/2

)

I Bgd

2 .

(8.24)

The invariant I Bgd

2 is explicitly present in the formula (8.24). Opposing Yu.Yu. Bag-
derina, below we prove that, in spite of Ω = 0, in spite of (8.23), and in spite of
other her formulas in [20], her basic invariants I Bgd

1 and I Bgd

2 can be expressed
through the invariants I1 and I3 from [3, 4] in her class BgdET4 coinciding with
the intersection class ShrID1∩BgdET4.

Let’s recall that in [12] the following theorem was proved for Bagderina’s pseu-
doscalar field j Bgd

5 from her paper [11].

Theorem 8.1. Within the intersection class ShrID1∩BgdET2, i. e. if the condi-

tions F = 0, α 6= 0, M 6= 0, Ω 6= 0 are fulfilled, Bagderina’s pseudoscalar field j Bgd

5

is expressed through M , through Ω, through the pseudoscalar fields Γ1
11, Γ

2
11, Γ

1
12,

Γ2
12, Γ

1
21, Γ

2
21, Γ

1
22, Γ

2
22 from (8.3), and through covariant derivatives of them along

the pseudovectorial fields α and γ.

The field j Bgd

5 is defined for all cases of intermediate degeneration. In is intro-
duced in [11] by means of the following formula:

j Bgd

5 = 5
(

2 j Bgd

1 j Bgd

3 + (j Bgd

2 − j Bgd

0 /6)2
)

. (8.25)

As it was shown in [12], the formula (8.25) is equivalent to the formula (6.1) (see
(7.5) in [12]). In our present case j Bgd

0 = −3Ω = 0 (see (7.3) and (7.4)). Therefore
the formula (8.25) reduces to the following formula:

j Bgd

5 = 5
(

2 j Bgd

1 j Bgd

3 + (j Bgd

2 )2
)

. (8.26)

The formula (8.26) is given in item 4 of Bagderina’s Theorem 2 in [11]. This
formula defines j Bgd

5 in our present class BgdET4 coinciding with the intersection
class ShrID1∩BgdET4. It is equivalent to the reduced formula (6.1):

j Bgd

5 = −125 det(R). (8.27)

The formula (8.27) is produced from (6.1) by setting Ω = 0 in it.
Looking through the proof of Theorem 8.1 in [12], one can see that it does not

depend on Ω otherwise than through the entry of Ω2 in (6.1). Therefore, repeat-
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ing the arguments from [12], we can prove the following theorem for Bagderina’s
pseudoscalar field j Bgd

5 in (8.26).

Theorem 8.2. Within the intersection class ShrID1∩BgdET4 coinciding with

BgdET4, i. e. if the conditions (7.3) are fulfilled, Bagderina’s pseudoscalar field

j Bgd

5 from (8.26) is expressed through M , through the pseudoscalar fields Γ1
11, Γ

2
11,

Γ1
12, Γ

2
12, Γ

1
21, Γ

2
21, Γ

1
22, Γ

2
22 from (8.3), and through covariant derivatives of them

along the pseudovectorial fields α and γ.

Bagderina’s invariant I Bgd

2 is given by the formula (6.4). The field j Bgd

5 is in
the numerator of this formula, while its denominator is defined by the field M
due to (7.4) or (8.17). As for the pseudoscalar fields Γ1

11, Γ2
11, Γ1

12, Γ2
12, Γ1

21,
Γ2
21, Γ

1
22, Γ

2
22 from (8.3), due to (8.4), (8.5), (8.6), (8.7), (8.8), and (8.9) they are

expressed through scalar invariants I1, I2, I3, I4, I7 and through the fields N and
M . According to Theorem 8.2, when expressing j Bgd

5 we might need to differentiate
these fields, i. e. calculate their covariant derivatives along α and γ. Doing it, we
shall produce higher order invariants in the sequence given by (8.11) and some
covariant derivatives of N and M along α and γ. Covariant derivatives of N and
M are described by the following lemma.

Lemma 8.2. In the case where Ω = 0 covariant derivatives of the pseudoscalar

fields M and N along the pseudovectorial fields α and γ are expressed through the

scalar invariants I1, I2, I3, I4 etc in the recurrent sequence given by (8.11) and

through these two fields themselves.

Lemma 8.2 in the present paper is similar to Lemma 8.2 in [12]. This lemma is
proved by means of the following explicit formulas:

∇αN = M, ∇γN = 0,
(8.28)

∇αM = I4 N
3 + 2 I1 N M, ∇γM =

√

N3 I7 N
2.

The formulas (8.28) are derived from the formulas (8.15) and (8.17) in [12] by
setting Ω = 0 in them. They should be applied repeatedly in order to calculate
higher order covariant derivatives of M and N .

Now, combining Lemma 8.2 with Theorem 8.2 and with the arguments given
just after Theorem 8.2, we derive the following theorem.

Theorem 8.3. Within the intersection class ShrID1∩BgdET4 coinciding with

BgdET4, i. e. if the conditions (7.3) are fulfilled, Bagderina’s basic invariant I Bgd

2

from (6.4) can be expressed through I1, I3 and through higher order invariants I4,
I6, I7 etc in the recurrent sequence given by (8.11).

9. Conclusions.

Three classes of umbilical equations, zero Gaussian curvature equations, and
zero mean curvature equations are defined in the present paper. They specify the
equations of the form (1.1) in all cases of intermediate degeneration. Generally
speaking, these geometric classes do not fit into particular subcases of both classi-
fications from [3, 4] and/or from [11].

Being intersected with the class ShrID1, which corresponds to the first case of
intermediate degeneration, the class of zero mean curvature equations produces a
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subclass coinciding with the intersection class ShrID1∩BgdET4 and with Bagde-
rina’s class BgdET4 of type four equations. We have compared two classifications
from [3, 4] and from [11] within this intersection class. As a result we have found
that most basic structures and basic formulas from Bagderina’s paper [11] do coin-
cide or are very closely related to those in [3, 4], though they are given in different
notations (see Lemma 7.1, Lemma 7.2, and Lemma 7.3). Similar results for the
case of general position and for the other intersection class ShrID1∩BgdET2 were
obtained in [19] and [12].

For her type four equations class BgdET4 in [11] Yu.Yu.Bagderina introduces
two basic invariants I Bgd

1 and I Bgd

2 . For our class ShrID1, which covers Bagderina’s
class BgdET4, three basic invariants I1, I2, I3 were introduced in [3, 4]. However
within the intersection class ShrID1∩BgdET4 the invariant I2 vanishes, so we have
two Bagderina’s invariants versus two ours. In [20] Yu.Yu.Bagderina managed to
express the invariants I1 and I3 through her invariants I Bgd

1 , I Bgd

2 and through their
derivatives. In the present paper we present the converse result, i. e. we have proved
that the invariants I Bgd

1 and I Bgd

2 can be expressed through our invariants I1, I2
and through their derivatives (see Lemma 8.1 and Theorem 8.3). Thus both sets
of basic invariants are equally applicable to solving the equivalence problem for the
equations (1.1) within the intersection class ShrID1∩BgdET4.
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