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ON SIMULTANEOUS APPROXIMATION OF SEVERAL

EIGENVALUES OF A SEMI-DEFINITE SELF-ADJOINT

LINEAR OPERATOR IN A HILBERT SPACE

Ruslan Sharipov

Abstract. A lower semi-definite self-adjoint linear operator in a Hilbert space is
taken whose discrete spectrum is not empty and comprises at least several eigenvalues
λmin = λ1 6 . . . 6 λm < σess. The problem of approximation of these eigenvalues
by eigenvalues of some linear operator in a finite-dimensional space of the dimension
s is considered and solved. The accuracy of the approximation obtained becomes
unlimitedly high as s → ∞.

1. Introduction.

The interest to Hilbert spaces and to linear operators in them is mainly due
to their applications in quantum mechanics where the spaces of square integrable
complex functions L2(C,R

3N ) and differential operators in them are considered.
The most important of them is the energy operator which is called the Hamiltonian
in general case and is called the Schrödinger operator in the case of particles in
potential fields. In many cases the Schrödinger operator appears to be self-adjoint
and semi-definite. With the quantum mechanical applications in view, Reed and
Simon in their book [1] give the following theorem (see § 2 in Chapter XIII of [1]).

Theorem 1.1. Let F be a lower semi-definite self-adjoint linear operator with the

domain D(F ) in a Hilbert space H such that its discrete spectrum is not empty and

λmin is ts minimal eigenvalue1. Let X be an eigenvector of F associated with the

eigenvalue λmin. Assume that the eigenvector X is expanded in some orthonormal

basis {hi}i=1, ... ,∞ of the Hilbert space H:

X = lim
n→∞

Xn, where Xn =

n
∑

i=1

xi hi. (1.1)

Assume that hi ∈ D(F ) for all i = 1, . . . , ∞ and suppose that

∃ lim
n→∞

〈Xn|FXn〉 = λmin ‖X‖2.
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Under these assumptions we have the equality

λmin = lim
n→∞

µ̂
(n)
1 ,

where µ̂
(n)
1 is the minimal eigenvalue of the Hermitian n × n matrix Φ(n) whose

elements are Φij = 〈hi|Fhj〉.

The angular brackets 〈•|•〉 in Theorem 1.1 mean the standard sesquilinear scalar
product of the Hilbert space H . The formula (1.1) in Theorem 1.1 means conver-
gence of the series

X =

∞
∑

i=1

xi hi, (1.2)

with respect to the norm in H , while the coefficients xi in (1.1) and (1.2) are
denoted according to the Einstein’s tensorial notation (see § 20 of Chapter I in [2]),
i. e. using the upper index i for the coordinates of the vector X .

Theorem 1.1 is in background of amost all numerical methods of quantum chem-
istry, though it is used without recognition and without references to it. The goal
of this paper is

1) to extend Theorem 1.1 to the case of several consequtive eigenvalues of the
operator F taken in the non-decreasing order starting from the lowest one;

2) exclude the orthonormal basis from it;
3) replace the domain D(F ) of the operator F by the domain Q(F ) of the corre-

sponding sesquilinear form qF (X,Y ) = 〈X |FY 〉.

2. Standard definitions and prerequisites.

A Hilbert space H is a complex (generally speaking infinite-dimensional) linear

vector space with some fixed positive sesquilinear form 〈X |Y 〉 = 〈Y |X〉 that defines

the norm ‖X‖ =
√

〈X |X〉 and thus defines the topology of a complete metric space
in H . With the quantum mechanical applications in view, all Hilbert spaces in this
paper are implicitly assumed to be separable.

The form 〈X |Y 〉 in H is assumed to be linear in its second argument Y and to
be conjugate linear with respect to the first argument X . This convention is used
in quantum mechanics (see. [3, 4]). The form 〈X |Y 〉 is called the standard scalar
product in H .

A linear operator F in a Hilbert space H is usually given along with its domain
D(F ) which is assumed to be a dense subspace ofH . The graph of a linear operator
F is the following subset of the Cartesian product H ×H :

Γ(F ) = {(X,Y ) ∈ H ×H : X ∈ D(F ) and Y = FX}.

Definition 2.1. A linear operator F in a Hilbert space H is called closed, if its
graph Γ(F ) is closed in H ×H .

An extension of an operator F is another operator with the domain bigger than
D(F ) which upon restricting to D(F ) coincides with F .

Definition 2.2. A linear operator F in a Hilbert space H is called closable if it
has at least one closed extension in H . The minimal closed extension of a closable
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operator F is its closed extension with the minimal domain. It is denoted through
F̄ and is shortly called the closure of F .

The minimal closed extension F̄ of a closable operator F is constructed by closing
its graph: Γ(F̄ ) = Γ(F ). This yields the folloiwing theorem.

Theorem 2.1. For any closable operator F in a Hilbert space H a vector X belongs

to the domain D(F̄ ) if and only if there is a sequence of vectors Xn ∈ D(F ) such

that the following relationships hold:

lim
n→∞

Xn = X, ∃ lim
n→∞

FXn = Y ∈ H.

Limits here are in the sense of convergence with respect to the norm in H, while

the vector Y is the value of the operator F̄ applied to the vector X, i. e. F̄X = Y .

Definition 2.3. Let F be a linear operator in a Hilbert space H . The linear
operator F ∗ with the domain

D(F ∗) = {X ∈ H : ∃Y ∈ H : 〈X |FZ〉 = 〈Y |Z〉 ∀Z ∈ D(F )} (2.1)

given by the formula F ∗X = Y , where the element Y ∈ H is uniquely fixed by the
condition 〈X |FZ〉 = 〈Y |Z〉 ∀Z ∈ D(F ) from (2.1), is called the conjugate operator
for the operator F .

In the book [5] the following theorem is given (see § 1 of Chapter VIII in [5]).

Theorem 2.2. Let F be a linear operator in a Hilbert space H. Then

1) the conjugate operator F ∗ is closed;

2) the operator F is closable if and only if D(F ∗) is dense in H and F̄ = F ∗∗ in

such a case;

3) if the operator F is closable, then (F̄ )∗ = F ∗.

Definition 2.4. A linear operator F in a Hilbert space H is called symmetric if
the conjugate operator F ∗ is an extension of F .

Practically the definition 2.4 can be replaced with a more simple and equivalent
definition.

Definition 2.5. A linear operator F in a Hilbert space H is called symmetric if
〈X |FY 〉 = 〈FX |Y 〉 for all X,Y ∈ D(F ).

Theorem 2.3. Each symmetric operator F in a Hilbert space H is closable. Its

closure F̄ itself is a symmetric operator in H.

Definition 2.6. A linear operator F in a Hilbert space H is called self-adjoint if
F ∗ = F , i. e. if F is symmetric and D(F ) = D(F ∗).

Definition 2.7. A symmetric operator F in a Hilbert space H is called essentially
self-adjoint if its closure F̄ is a self-adjoint opertator in H .

Each linear operator F in a Hilbert space H is associated with the sesquilinear
form qF (X,Y ) = 〈X |FY 〉 which is defined for all X and Y in D(F ). In the case of
a symmetric operator F the form qF is symmetric, i. e. the following relationship
holds: qF (X,Y ) = qF (Y,X) for all X,Y ∈ D(F ).
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Definition 2.8. A symmetric linear operator F in a Hilbert spaceH is called lower
semi-definite if its form qF is lower semi-definite, i. e. if there is a real constant C
such that qF (X,X) = 〈X |FX〉 > C ‖X‖2 for all X ∈ D(F ). If C = 0, such an
operator F is called non-negative.

In the case of a self-adjoint operator F , using the spectral theorem, the form qF
is extended from D(F ) to the bigger set

Q(F ) = D(
√

|F |) (2.2)

(see § 6 of Chapter VIII in [5] and § 53 of Part XV in [6]), preserving its symmetry:

qF (X,Y ) = qF (Y,X) for all X,Y ∈ Q(F ).

In the case of a lower semi-definite self-adjoint linear operator F the set (2.2) and
the values of the form qF in it admit a more constructive description.

Theorem 2.4. Let F be a lower semi-definite self-adjoint linear operator in a

Hilbert space H. Then a vector X belongs to the domain Q(F ) of the corresponding

sesquilinear form qF if and only if there is a sequence of vectors Xn in the domain

D(F ) of the operator F such that

1) ‖Xn −X‖ → 0 as n → ∞;

2) 〈Xn −Xm|F (Xn −Xm)〉 → 0 as n,m → ∞.

Theorem 2.5. Under the assumptions of Theorem 2.4 let X and Y be two vectors

from Q(F ) and let Xn and Yn be two sequences of vectors from D(F ) approximating

X and Y in the sense of Theorem 2.4. Then

qF (X,Y ) = lim
n→∞

〈Xn|FYn〉.

3. Minimax principle.

Theorem 3.1. Let F be a lower semi-definite self-adjoint operator with the domain

D(F ) in a Hilbert space H. For some positive integer n denote

µn(F ) = sup
X1, ... , Xn−1

inf
X∈D(F ), ‖X‖=1

X⊥X1, ... , X⊥Xn−1

〈X |FX〉. (3.1)

Then exactly one of the two options holds:

1) there exist n eigenvalues of the operator F below the lower limit of its essential

spectrum σess(F ) and the number µn(F ) in (3.1) coincides with λn, provided

that each eigenvalue of the operator F in the non-decreasing sequence

λmin = λ1 6 . . . 6 λn

is repeated according to its multiplicity, except for maybe the last one;

2) the number µn(F ) in (3.1) coincides with the lower limit of of the essential

spectrum σess(F ) of the operator F . In this case there are not more than n− 1
eigenvalues of the operator F below σess(F ), each being counted with its multi-

plicity, and µm(F ) = µn(F ) for all m > n.
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Theorem 3.1 expresses the minimax principle for linear operators in Hilbert
spaces. Its statement and its proof are given in the book [1] (see § 1 of Chapter XIII).

Remark. In [1] it is said that in Theorem 3.1 the domain D(F ) of the operator
F can be replaced with the domain Q(F ) of its sesquilinear form qF (see (2.2)). At
the same time the quantity 〈X |FX〉 is replaced by the value of the form qF (X,X).

The case n = 1 in Theorem 3.1 is somewhat different from others. In this case
the formula (3.1) simplifies and takes the form

µ1(F ) = inf
X∈D(F ), ‖X‖=1

〈X |FX〉. (3.2)

The next theorem is a corollary of Theorem 3.1.

Theorem 3.2. If a lower semi-definite self-adjoint operator F with the domain

D(F ) in a Hilbert space H has a non-empty discrete spectrum below σess(F ), then
its minimal eigenvalue λmin = µ1(F ) is given by the formula (3.2).

Remark. The domain D(F ) of the operator F in the formula (3.2) can be
replaced by the domain Q(F ) of its sesquilinear form qF (see (2.2)). At the same
time the quantity 〈X |FX〉 is replaced by the value of the form qF (X,X).

4. Minimum principle.

In the case n = 1 the minimax principle is expressed by the formula (3.2). It
transforms into minimum principle. A similar minimum principle can be formulated
for the case n > 1.

Theorem 4.1. Let F be a lower semi-definite self-adjoint linear operator with the

domain D(F ) in a Hilbert space H whose discrete spectrum below σess(F ) comprises

at least n eigenvalues arranged in the non-decreasing order

λmin = λ1 6 . . . 6 λn−1 6 λn

so that each eigenvalue in the sequence is repeated according to its multiplicity, ex-

cept for maybe the last one. Let X1, . . . , Xn−1 be linerly independent eigenvectors

for the initial n− 1 eigenvalues in this non-decreasing sequence. Then the quantity

µn(F ) = λn is given by the formula

µn(F ) = inf
X∈D(F ), ‖X‖=1

X⊥X1, ... , X⊥Xn−1

〈X |FX〉.

The minimum principle similar to Theorem 4.1 for symmetric operators in a
finite-dimensional Euclidean space can be found in the book [7]. For the Laplace
operator it is formulated in [8]. The proof of Theorem 4.1 can be found in [9]. In
this paper Theorem 4.1 is given for the sake of completeness of our preliminary
review. It is not used in what follows.

5. The Rayleigh-Ritz method.

Theorem 5.1. Let F be a lower semi-definite self-adjoint linear operator with the

domain D(F ) in a Hilbert space H, let V ⊂ D(F ) be a finite-dimensional subspace

of the dimension n in D(F ), and let P be the orthogonal projector onto V . The
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composite operator P ◦F ◦P is lower semi-definite and self-adjoint. Its restriction

FV to the subspace V has exactly n eigenvalues µ̂1, . . . , µ̂n that can be arranged in

the non-decreasing order µ̂1 6 . . . 6 µ̂n where each eigenvalue is repeated according

to its multiplicity. Under these assumptions the following inequalities hold:

µm(F ) 6 µ̂m, where m = 1, . . . , n. (5.1)

The quantities µm(F ) in the left hand side of the inequalities (5.1) are given
by the formula (3.1). They do not depend on the choice of the subspace V in
Theorem 5.1. The statement and the proof of Theorem 5.1 are given in the book
[1] (see § 2 of Chapter XIII).

Remark. As we already noted above, the domain D(F ) of the operator F when
computing µm(F ) in the formula (3.1) can be replaced by the domain Q(F ) of its
sesquilinear form qF (see (2.2)). At the same time the quantity 〈X |FX〉 is replaced
by the value of the form qF (X,X). In Theorem 5.1 the domain D(F ) can also be
replaced by the domain Q(F ). Although then we should define the operator FV in
a different way through the restriction of the form qF to the subspace V ⊂ Q(F ).

Theorem 5.2. Let F be a lower semi-definite self-adjoint linear operator in a

Hilbert space H whose associated sesquilinear form is qF and the domain of qF is

Q(F ). Let V ⊂ Q(F ) be a finite-dimensional subspace of the dimension n in Q(F )
and let FV be a linear operator in the subspace V defined by the restriction of the

form qF to V according to the formula

〈Y |FV X〉 = qF (Y,X) for all X,Y ∈ V.

The operator FV has exactly n eigenvalues µ̂1, . . . , µ̂n that can be arranged in the

non-decreasing order µ̂1 6 . . . 6 µ̂n where each eigenvalue is repeated according to

its multiplicity. Under these assumptions the following inequalities hold:

µm(F ) 6 µ̂m, where m = 1, . . . , n. (5.2)

Proof. Applying the minimax principle expressed by Theorem 3.1 to the operator
FV in the finite-dimensional space V , from (3.1) we derive

µ̂m = sup
X1, ... , Xm−1∈V

inf
X∈V, ‖X‖=1

X⊥X1, ... , X⊥Xm−1

〈X |FV X〉 =

= sup
X1, ... , Xm−1∈V

inf
X∈V, ‖X‖=1

X⊥X1, ... , X⊥Xm−1

qF (X,X).
(5.3)

Let P be the orthogonal projector onto the subspace V . Them (5.3) implies

µ̂m = sup
X1, ... , Xm−1∈H

inf
X∈V, ‖X‖=1

X⊥PX1, ... , X⊥PXm−1

qF (X,X) =

= sup
X1, ... , Xm−1∈H

inf
X∈V, ‖X‖=1

X⊥X1, ... , X⊥Xm−1

qF (X,X) >

> sup
X1, ... , Xm−1∈H

inf
X∈Q(F ), ‖X‖=1

X⊥X1, ... , X⊥Xm−1

qF (X,X) = µm(F ).

(5.4)
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The inequality in (5.4) arises since we replace V in the left hand side of the inequality
by a larger subspace Q(F ) in the right hand side of this inequality. The last equality
in (5.4) is due to the remark to Theorem 3.1 on page 5. �

Theorems 5.1 and 1.1 constitute a base for the Rayleigh-Ritz method. Its appli-
cation to the experimental confirmation of the Lamb shift is described in [1] (see
§ 2 of Chapter XIII therein). See also [10–17].

6. Approximation of several eigenvalues.

Theorem 6.1. Let F be a lower semi-definite self-adjoint linear operator with

the domain D(F ) in a Hilbert space H whose discrete spectrum below σess(F ) is

not empty and comprises at least m eigenvalues arranged in the non-decreasing

order λmin = λ1 6 . . . 6 λm so that each eigenvalue is repeated according to its

multiplicity, except for maybe the last one. Let X1, . . . , Xm be linearly independent

eigenvectors corresponding to the eigenvalues λmin = λ1 6 . . . 6 λm and assume

that for each eigenvector Xk a sequence of vectors Xkn from the domain Q(F ) of

the associated with F sesquilinear form qF is given so that

Xk = lim
n→∞

Xkn and lim
n→∞

qF (Xkn, Xqn〉 = 〈Xk|FXq〉, (6.1)

where 1 6 k, q 6 m. Under these assumptions

λk = lim
n→∞

µ̂
(n)
k for all k = 1, . . . ,m, (6.2)

where µ̂
(n)
min = µ̂

(n)
1 6 . . . 6 µ̂

(n)
m are initial m eigenvalues of the operator FVn

generated by the restriction of the form qF to the finite-dimensional subspace

Vn = Span({Xks, where 1 6 k 6 m, 1 6 s 6 n}) ⊂ Q(F ) (6.3)

taken in the non-decreasing order so that each eigenvalue is repeated according to

its multiplicity, except for maybe the last one.

Proof. The eigenvectors X1, . . . , Xm belong to the domain D(F ). They are lin-
early independent. Their span

V = Span(X1, . . . , Xm) ⊂ D(F ) ⊂ Q(F ) (6.4)

is an m-dimensional subspace in D(F ) and in Q(F ). Let P be the orthogonal
projector onto the subspace (6.4). We set

FV = P ◦F ◦P
V
. (6.5)

In other words, we denote through FV the restriction of the composite operator
P ◦F ◦P to the subspace (6.4). The eigenvectors X1, . . . , Xm of the operator F

are eigenvectors of the operator (6.5), while the corresponding eigenvalues coincide
with λmin = λ1 6 . . . 6 λm. Therefore the matrix of the operator (6.5) in the basis
of the eigenvectors X1, . . . , Xm is

F =

∥

∥

∥

∥

∥

∥

λ1 . . . 0
...

. . .
...

0 . . . λm

∥

∥

∥

∥

∥

∥

. (6.6)
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The operator (6.5) is generated by the restriction of the form qF to the subspace
(6.4), therefore the matrix (6.6) obeys the relationships

H = GF , F = G−1 H, (6.7)

where H and G are two Hermitian matrices with the components

Hsk = qF (Xs, Xk) = 〈Xs|FXk〉, gsq = 〈Xs|Xq〉. (6.8)

The matrix G is the Gram matrix of the basis of vectors X1, . . . , Xm. Since these
vectors are linearly independent, detG 6= 0 and hence the matrix relationships (6.7)
are consistent.

Let’s consider the vectors X1n, . . . , Xmn. According to the first condition in
(6.1) these vectors approximate X1, . . . , Xm in the sense of convergence with re-
spect to the norm in the Hilbert space H . This means that for all sufficiently large
n the vectors X1n, . . . , Xmn are linearly independent. We set

Vn = Span(X1n, . . . , Xmn) ⊂ Q(F ). (6.9)

The subspace (6.9) is analogous to the subspace (6.4). For all sufficiently large n

the dimensions of these subspaces do coincide:

dimVn = dimV = m. (6.10)

Generally speaking, the subspace (6.9) is not enclosed in D(F ). Therefore we
cannot write a formula similar to (6.5). But we can consider the operator FVn

generated by the restriction of the sesquilinear form qF to the subspace (6.9). Let
F (n) be the matrix of such operator in the basis X1n, . . . , Xmn. It is similar to the
matrix (6.6), though it is not diagonal. The matrix F (n) obeys the relationships
which are similar to the relationships (6.7):

H(n) = G(n) F (n), F (n) = (G(n))−1 H(n). (6.11)

In (6.11) we see two Hermitian matrices H(n) and G(n). Their components are
defined by the formulas similar to (6.8):

H[n]sk = qF (Xsn, Xkn) = 〈Xsn|FVn
Xkn〉, g[n]sq = 〈Xsn|Xqn〉. (6.12)

The matrix G(n) in (6.11) is the Gram matrix for the basis composed by the vectors
X1n, . . . , Xmn. For all sufficiently large n the matrixG(n) is non-degenerate, which
is in agreement with (6.10). Hence the relationships (6.11) are consistent.

Now we consider the conditions (6.1). Applying them to (6.8) and (6.12), we get

lim
n→∞

g[n]sq = gsq, lim
n→∞

H[n]sk = Hsk. (6.13)

In the matrix form the relationships (6.13) are written as follows:

lim
n→∞

G(n) = G, lim
n→∞

H(n) = H. (6.14)
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The first relationship (6.14) yields lim
n→∞

detG(n) = detG 6= 0. Hence

∃ lim
n→∞

(G(n))−1 = G−1. (6.15)

Let’s combine (6.15) with the second relationship (6.14) and then take into account
(6.11). This yields the following relationship

∃ lim
n→∞

F (n) = F . (6.16)

The eigenvalues of the matrix F are the eigenvalues of the operator (6.5), coinciding
with λmin = λ1 6 . . . 6 λm. They are presented explicitly in (6.6). The eigenvalues
of the matrix F (n) in (6.16) are the eigenvalues of the self-adjoint operator FVn

in
m-dimensional space Vn. We denote them

λ̂
(n)
min = λ̂

(n)
1 6 . . . 6 λ̂(n)

m . (6.17)

From (6.16) for the eigenvalues (6.17) we derive

∃ lim
n→∞

λ̂
(n)
k = λk for all k = 1, . . . ,m. (6.18)

In the next step we consider the subspace (6.3). The sesquilinear form qF pro-
duces the self-adjoint operator FVn

whose initial m eigenvalues in Theorem 6.1 are

denoted through µ̂
(n)
min = µ̂

(n)
1 6 . . . 6 µ̂

(n)
m . We can apply Theorem 5.2 to the

subspace (6.3). Applying this theorem, we get

µk(F ) 6 µ̂k, where k = 1, . . . , m. (6.19)

Moreover, in our case the operator F is such that for all µk(F ) from (6.19) the first
of the two alternative options from Theorem 3.1 is realized. This means that

µk(F ) = λk for all k = 1, . . . , m. (6.20)

Comparing (6.19) and (6.20), we derive

λk 6 µ̂k for all k = 1, . . . , m. (6.21)

In order to complete the proof of Theorem 6.1 we compare the subspaces (6.3)
and (6.9) along with the self-adjoint operators FVn

and FVn
in them. It is easy

to see that Vn ⊂ Vn. If we denote through Pn the orthogonal projector onto the
smaller subspace Vn, we can easily derive the relationship

FVn
= Pn ◦FVn

◦Pn
Vn

. (6.22)

Due to the inclusion Vn ⊂ Vn and the relationship (6.22) we can apply Theorem 5.1
to the subspace Vn and to the operator FVn

in the enclosing subspace Vn. Applying
this theorem, we derive the inequalities

µk(FVn
) = µ̂k 6 λ̂

(n)
k for all k = 1, . . . , m. (6.23)

From (6.21) and (6.23) we derive double inequalities:

λk 6 µ̂k 6 λ̂
(n)
k for all k = 1, . . . , m. (6.24)

Now, applying (6.18) to (6.24), we get the required result expressed by the formula
(6.2). Theorem 6.1 is proved. �
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7. Conclusions

The main result of this paper is expressed by Theorem 6.1. As a mathematical
result it has independent value. As for its application to quantum mechanics and
quantum chemistry, it means that the Rayleigh-Ritz method can be used not only
for computing the ground energy level of atoms and molecules, but for several
consequtive excited energy levels along with the ground level. A way of applying
Theorem 6.1 to quantum chemistry using polylinear splines is described in [9].
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