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ON CYLINDRICAL REGRESSION IN

THREE-DIMENSIONAL EUCLIDEAN SPACE.

O. V. Ageev, R. A. Sharipov

Abstract. The three-dimensional cylindrical regression problem is a problem of
finding a cylinder best fitting a group of points in three-dimensional Euclidean space.
The words best fitting are usually understood in the sense of the minimum root mean
square deflection of the given points from a cylinder to be found. In this form the
problem has no analytic solution. If one replaces the root mean square averaging by a
certain biquadratic averaging, the resulting problem has an almost analytic solution.
This solution is reproduced in the present paper in a coordinate-free form.

1. Introduction.

Linear, circular, elliptic, and ellipsoidal regression problems are presented in
many sources (see [1–6]). Cylinder is one more geometric shape commonly used
in machine design and in technical drawing. The cylindrical regression problem
is also presented in many sources (see [7–11]). However, its solution is usually
given in the form of a computational algorithm using iterative approximations.
The exception is [12]. In section 7 of [12] the almost analytic solution of the
problem is found. Unfortunately this solution is expressed in a semi-coordinate
form associating an orthonormal triple of vectors U, V, W with the cylinder being
considered. Moreover it uses the concept of the center point C, which is ambiguous
for a cylinder. Our goal in this paper is to reproduce the almost analytic solution

of the cylindrical regression problem from
[12] in a coordinate-free form thus making
it more clear and reader-friendly.

2. A cylinder and its axis.

Any cylinder is given by its radius ρ
and its axis (see Fig. 2.1). The axis of
a cylinder is a straight line. Usually a
straight line is given by the equation

r = r0 + a t, (2.1)

where r0 is the radius-vector of some fixed
point A of the line, a is some non-zero

vector on the line, and t is a scalar parameter. In [12] the point A is denoted
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through C and is called the center of a cylinder. As it was noted in [6] the choice
of such a point is not unique. In order to avoid the ambiguity in the choice of the
initial point A on the line (see Fig. 2.1) the parametric equation (2.1) was replaced
by the following vectorial non-parametric equation:

[r, a] = b, where b ⊥ a (2.2)

(see [6] and [13]). The square brackets in (2.2) stand for the vector product1

operation. The vector b is produced from r0 by means of the formula

b = [r0, a], (2.3)

however it has no ambiguity since the right hand side of (2.3) is invariant with
respect to the transformation r0 → r0 + a t.

3. The statement of the problem.

Let X1, . . . , Xn be a group of points in the space given by their radius-vectors
r1, . . . , rn. The cylindrical regression problem in our case consists in finding three
parameters — two vectors a and b and one scalar ρ that determine the radius and
the axis of a cylinder best fitting the group of points X1, . . . , Xn in the sense of
the following biquadratically averaged deflection

D̄ 2 =
1

n

n
∑

i=1

d 2

i (2 ρ± di)
2. (3.1)

Here d1, . . . , dn are the distances from the points X1, . . . , Xn to the surface of
a cylinder to be found. The sign plus in (3.1) is taken for exterior points and
minus for interior points. In [12] the quantity (3.1) is called the least-squares error
function2. It differs from the standard least-squares sum

d̄ 2 =
1

n

n
∑

i=1

d 2

i , (3.2)

but coincides with the sum (3.3) used in [3] in the case of a circle. The sum (3.1) is
equivalent to the sum (3.2) in the sense that both D̄ and d̄ tend to zero as di → 0.
In this case D̄/d̄ → 2 ρ.

4. Initial steps for solving the problem.

The distance from the point Xi to the line (2.1), which is the axis of the cylinder
(see Fig. 2.1), is given by the following formula

ρi =
|[ri − r0, a]|

|a|
. (4.1)

Without loss of generality we can assume that

|a| = 1. (4.2)

1 It is also called the cross product, i. e. [x,y] = x× y.
2 Up to the constant factor 1/n.
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Then, taking into account (2.3) and (4.2), from (4.1) we derive

ρi = |[ri, a]− b|. (4.3)

The distance from the point Xi to the surface of the cylinder (see Fig. 2.1) is
obviously given by the following formula:

di = |ρi − ρ|. (4.4)

Let’s apply (4.4) to (3.1), As a result we obtain

D̄ 2 =
1

n

n
∑

i=1

(ρi − ρ)2(ρi + ρ)2 =
1

n

n
∑

i=1

(ρ 2

i − ρ2)2. (4.5)

Definition 4.1. A cylinder with the radius ρ and the axis given by the equation
(2.3), where |a| = 1, is called an optimal cylinder best fitting the pointsX1, . . . , Xn

if the quantity (4.5) takes its minimal value.

Expanding (4.5), we derive the following expression for D̄ 2:

D̄ 2 =
1

n

n
∑

i=1

ρ 4

i −
2 ρ2

n

n
∑

i=1

ρ 2

i + ρ4. (4.6)

The expression in the right hand side of (4.6) is biquadratic with respect to the
variable ρ. It takes its minimal value if ρ is given by the formula

ρ2 =
1

n

n
∑

i=1

ρ 2

i . (4.7)

The formula (4.7) coincides with the formula (117) in [12]. Substituting (4.7) back
into (4.6), we derive the following formula:

D̄ 2 =
1

n

n
∑

i=1

ρ 4

i −

(

1

n

n
∑

i=1

ρ 2

i

)

2

. (4.8)

The formula (4.8) is similar to the formula (3.6) in [3]. The formula (4.3) yields
the following expression for ρ 2

i in (4.8):

ρ 2

i = |b|2 − 2 ([ri, a],b) + |[ri, a]|
2. (4.9)

The round brackets in (4.9) denote the scalar product1 operation.
Now let’s substitute (4.9) back into (4.8). This yields

D̄ 2 =
1

n

n
∑

i=1

(

|b|2 − 2 ([ri, a],b) + |[ri, a]|
2

)

2

−

−

(

1

n

n
∑

i=1

(

|b|2 − 2 ([ri, a],b) + |[ri, a]|
2

)

)

2

.

(4.10)

1 It is also called the dot product, i. e. (x,y) = x · y.
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Upon expanding (4.10) we find that the fourth order terms and the third order
terms with respect to b do cancel each other. As a result we get

D̄ 2 =
4

n

n
∑

i=1

([ri, a],b)
2 − 4

(

1

n

n
∑

i=1

([ri, a],b)

)

2

+

+4

(

1

n

n
∑

i=1

([ri, a],b)

)(

1

n

n
∑

i=1

|[ri, a]|
2

)

−
4

n

n
∑

i=1

([ri, a],b) |[ri, a]|
2 +

+
1

n

n
∑

i=1

|[ri, a]|
4 −

(

1

n

n
∑

i=1

|[ri, a]|
2

)

2

.

(4.11)

In (4.11) we see the following combination of the vectorial and scalar products:
([ri, a],b). Such a combination is known as the mixed product (see [13]):

([ri, a],b) = (b, [ri, a]) = (b, ri, a). (4.12)

The mixed product (b, ri, a) is completely skew-symmetric, i. e. it is skew-symmetric
with respect to any pair of its multiplicands. Therefore

(b, ri, a) = −(ri,b, a) = (ri, a,b) = (ri, [a,b]). (4.13)

Combining (4.12) and (4.13), we derive

([ri, a],b) = (ri, [a,b]). (4.14)

Relying on (4.14), we introduce the following vector c:

c = [a,b]. (4.15)

Since b ⊥ a (see (2.2)), there is an inverse formula expressing b through c:

b = −
[a, c]

|a|2
. (4.16)

Let’s apply (4.15) to (4.14) and then substitute (4.14) back into (4.11). As a
result we derive the following formula for D̄ 2:

D̄ 2 =
4

n

n
∑

i=1

(ri, c)
2 − 4

(

1

n

n
∑

i=1

(ri, c)

)

2

+

+4

(

1

n

n
∑

i=1

(ri, c)

)(

1

n

n
∑

i=1

|[ri, a]|
2

)

−
4

n

n
∑

i=1

(ri, c) |[ri, a]|
2 +

+
1

n

n
∑

i=1

|[ri, a]|
4 −

(

1

n

n
∑

i=1

|[ri, a]|
2

)

2

.

(4.17)

The first two terms in (4.17) are quadratic with respect to the vector c. They can
be written as 4Q(c, c), where Q is a quadratic form:

Q(c, c) =
1

n

n
∑

i=1

(ri, c)
2 −

(

1

n

n
∑

i=1

(ri, c)

)

2

. (4.18)
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The next two terms in (4.17) are linear with respect to the vector c. They can be
written as −4 (L, c), where L is the following vector:

L =
1

n

n
∑

i=1

ri |[ri, a]|
2 −

(

1

n

n
∑

i=1

ri

)(

1

n

n
∑

i=1

|[ri, a]|
2

)

. (4.19)

The last two terms in (4.17) do not depend on c. They can be written as

M =
1

n

n
∑

i=1

|[ri, a]|
4 −

(

1

n

n
∑

i=1

|[ri, a]|
2

)

2

. (4.20)

Combining (4.18), (4.19), and (4.20), we can write (4.17) as

D̄ 2 = 4Q(c, c)− 4 (L, c) +M. (4.21)

The last term M in (4.21) is a constant with respect to the variable c, though it
depends on the variable a. Similarly L is a constant vector with respect to the
variable c, though it depends on the variable a. The quadratic form Q(c, c) does
not depend on a.

Note that the formula (4.21) is similar to the formula (3.7) in [3]. The quadratic
form Q(c, c) in it coincides with the quadratic form Q(n,n) given by the formula
(2.19) in [3]. It does actually coincides with the form Q(a, a) given by the formula
(4.7) in [6], though the formula (4.7) in [6] looks somewhat different from (4.18).
The form Q(c, c) is called the non-flatness form for a group of points in [3]. It
is called the non-linearity form in [6]. Both terms are consistent regarding the
applications of the form Q in [3] and [6].

Lemma 4.1. The expression for Q(c, c) in (4.18) is invariant with respect to the

transformation ri → ri − p, where p is an arbitrary constant vector.

The proof is pure calculations upon substituting ri − p for ri into (4.18).
Now, if we define the center of mass for the group of points X1, . . . , Xn by

means of the formula for its radius-vector

rcm =
1

n

n
∑

i=1

ri, (4.22)

then we can choose p = rcm and apply Lemma 4.1. As a result we obtain the
following formula for the quadratic form Q(c, c):

Q(c, c) =
1

n

n
∑

i=1

(ri − rcm, c)
2 (4.23)

The formula (4.23) means that the form Q is positive, i. e. Q(c, c) > 0. In most
practical cases this form is strongly positive, i. e. Q(c, c) > 0 for all c 6= 0.

It is well known (see [14]) that any quadratic form Q in a linear Euclidean space
E is associated with some symmetric operator Q : E → E such that

Q(x,y) = (Qx,y) = (x, Qy). (4.24)
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In our case dimE = 3. Therefore the operator Q in (4.24) has three eigenvalues
λ1, λ2, λ3 associated with three mutually perpendicular eigenvectors e1, e2, e3 of
the unit length: |e1| = |e2| = |e3| = 1 and ei ⊥ ej for i 6= j. Due to (4.23) the
eigenvalues λ1, λ2, λ3 are non-negative. Without loss of generality we enumerate
these eigenvalues in the non-decreasing order:

0 6 λ1 6 λ2 6 λ3. (4.25)

Using the eigenvalues (4.25), we define the following four cases:

1) the non-degenerate case, where 0 < λ1 6 λ2 6 λ3;
2) the simple degenerate case, where 0 = λ1 < λ2 6 λ3;
3) the double degenerate case, where 0 = λ1 = λ2 6 λ3;
4) the triple degenerate case, where 0 = λ1 = λ2 = λ3.

Our next goal is to find the minimum of the expression in the right hand side of
(4.21) with respect to the variable c. It is well-known that minima (as well as other
extrema) of multivariate functions are defined by means of the gradient equation:

∇c(D̄
2) = grad

c
(D̄ 2) = 0. (4.26)

Applying (4.26) to (4.21), we derive the operator equation

2Q c− L = 0. (4.27)

In the non-degenerate case the operator equation (4.27) is easily solvable:

c =
1

2
Q−1L =

(e1,L) e1
2λ1

+
(e2,L) e2

2λ2

+
(e3,L) e3

2λ3

. (4.28)

The solution (4.28) of the equation (4.27) is unique. It corresponds to the minimum
of the expression in the right hand side of (4.21). Substituting (4.28) back into
(4.21), we derive the following formula for the minimal value of D̄ 2:

D̄ 2 = M −
(e1,L)

2

λ1

−
(e2,L)

2

λ2

−
(e3,L)

3

λ3

. (4.29)

In the degenerate cases the formula (4.29) is not applicable. The degenerate
cases are served by the following lemmas.

Lemma 4.2. The eigenvalue λk of the operator Q in (4.24) vanishes if and only

if all of the points X1, . . . , Xn belong to the plane given by the equation

(r− rcm, ek) = 0, (4.30)

where the radius-vector of the center of mass rcm is given by the formula (4.22).

Lemma 4.3. If the eigenvalue λk of the operator Q in (4.24) is equal to zero,

then the vector L given by the formula (4.19) is perpendicular to the corresponding

eigenvector ek, i. e. (L, ek) = 0.

Proof of Lemma 4.2. Due to (4.24) the equality λk = 0 implies Q(ek, ek) = 0.
Therefore, applying the formula (4.23), we derive

n
∑

i=1

(ri − rcm, ek)
2 = 0. (4.31)
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The sum of the squares of real numbers is equal to zero if and only if each number
is equal to zero. Hence (4.31) implies (ri−rcm, ek) = 0 for all i = 1, . . . , n, i. e. the
the radius vector of each point r = ri in the group X1, . . . , Xn obeys the equation
(4.30). Lemma 4.2 is proved. �

Proof of Lemma 4.3. Let’s calculate the scalar product (L, ek) using (4.19):

(L, ek) =
1

n

n
∑

i=1

(ri, ek) |[ri, a]|
2 −

(

1

n

n
∑

i=1

(ri, ek)

)(

1

n

n
∑

i=1

|[ri, a]|
2

)

. (4.32)

Applying (4.22) to the formula (4.32), we bring it to

(L, ek) =
1

n

n
∑

i=1

(ri, ek) |[ri, a]|
2 − (rcm, ek)

(

1

n

n
∑

i=1

|[ri, a]|
2

)

=

=
1

n

n
∑

i=1

(

(ri, ek)− (rcm, ek)
)

|[ri, a]|
2.

(4.33)

Since λk = 0, Lemma 4.2, which is already proved, yields (ri, ek) = (rcm, ek). Hence
the last sum in (4.33) is equal to zero, which implies (L, ek) = 0. This means that
Lemma 4.3 is proved. �

Note that in the double degenerate case Lemma 4.2 says that the points
X1, . . . , Xn belong to the intersection of two planes given by the equations

(r− rcm, e1) = 0, (r− rcm, e2) = 0. (4.34)

The intersection of the planes (4.34) is the straight line l passing through the center
of mass point and directed along the vector e3. It is clear that the solution of the
best fitting cylinder problem in this case cannot be unique. Indeed, any cylinder
whose axis is parallel to the line l and whose surface comprises the line l is a best
fitting cylinder for the group of points X1, . . . , Xn belonging to the line l.

In the triple degenerate case Lemma 4.2 says that the points X1, . . . , Xn

belong to the intersection of three planes given by the equations

(r− rcm, e1) = 0, (r− rcm, e2) = 0, (r− rcm, e3) = 0. (4.35)

The intersection of the planes (4.35) is a set consisting of exactly one point which
is the center of mass of the points X1, . . . , Xn. Therefore in this case the points
X1, . . . , Xn do coincide with each other and with their center of mass. Any cylinder
whose surface comprises the center of mass point is a best fitting cylinder for them.

In the simple degenerate case the solution of the best fitting cylinder problem
can also be not unique. In this case Lemma 4.2 says that the points X1, . . . , Xn

belong to the plane given by the equation

(r− rcm, e1) = 0. (4.36)

Let’s imagine two parallel straight lines l1 and l2 on the plane (4.36) and imagine
a group of points X1, . . . , Xn belonging to these two lines. There are infinitely
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many cylinders whose surfaces comprise two parallel straight lines l1 and l2. All of
them are best fitting cylinders for the points X1, . . . , Xn in this case.

Due to the non-uniqueness observed in the above examples we shall not consider
the degenerate cases at all. Below in Section 5 we complete the solution of the
problem for the non-degenerate case only which is the most practical one.

5. The solution of the problem for the non-degenerate case.

The expression (4.29) for D̄ 2 comprises the scalar parameterM and the vectorial
parameter L. They are given by the formulas (4.20) and (4.19) respectively. The
parameter M is quartic with respect to a, while L is quadratic with respect to a.
Upon substituting (4.20) and (4.19) into (4.29) we get an expression for D̄ 2 which
is quartic with respect to a. The vector a can be presented through its expansion
in the orthonormal basis of the eigenvectors e1, e2, e3 of the operator Q:

a =

3
∑

i=1

ai ei. (5.1)

We use upper indices a1, a2, a3 for the components of the vector a in (5.1) according
to Einstein’s tensorial notation (see [13]). In terms of these components the quartic
expression for D̄ 2 can be written as follows:

D̄ 2 =
3

∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

Dijkq a
i aj ak aq. (5.2)

Through Dijkq in (5.2) we denote the components of a symmetric tensor D. Due
to the symmetry not all of them are independent. Here is the list of independent
components: D1111, D2222, D3333, D1112, D1113, D1222, D2223, D1333, D2333, D1122,
D1133, D2233, D1123, D1223, D1233. Using them, we can write (5.2) as

D̄ 2 = D1111 (a
1)4 +D2222 (a

2)4 +D3333 (a
3)4 +

+4D1112 (a
1)3 a2 + 4D1113 (a

1)3 a3 + 4D1222 a
1 (a2)3 +

+4D2223 (a
2)3 a3 + 4D1333 a

1 (a3)3 + 4D2333 a
2 (a3)3 +

+6D1122 (a
1)2 (a2)2 + 6D1133 (a

1)2 (a3)2 + 6D2233 (a
2)2 (a3)2 +

+12D1123 (a
1)2 a2 a3 + 12D1223 a

1 (a2)2 a3 + 12D1233 a
1 a2 (a3)2.

(5.3)

The components a1, a2, a3 of the vector a in (5.1) are not independent. From (4.2)
we derive the following relationship for them:

(a1)2 + (a2)2 + (a3)2 = 1. (5.4)

The problem now is reduced to finding the minimum of the expression (5.3)
under the restriction (5.4). Taking a1 and a2 for independent variables and using
(5.4), one can express a3 as a function a3 = a3(a1, a2). Then

∂a3

∂a1
= −

a1

a3
,

∂a3

∂a2
= −

a2

a3
. (5.5)
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The minimum of (5.3) is determined by the following two equations:

∂D̄ 2

∂a1
= 0,

∂D̄ 2

∂a2
= 0. (5.6)

When calculating the derivatives (5.6) we take into account (5.5). As a result we
derive two homogeneous polynomial equations of the fourth degree:

P31(a
1, a2, a3) = 0, P32(a

1, a2, a3) = 0. (5.7)

Taking a2 and a3 for independent variables and acting in a similar way as above,
we derive the other two homogeneous polynomial equations of the fourth degree

P12(a
1, a2, a3) = 0, P13(a

1, a2, a3) = 0. (5.8)

Then we take a3 and a1 for independent variables and repeat the procedure. As a
result we obtain two more homogeneous polynomial equations of the fourth degree:

P23(a
1, a2, a3) = 0, P21(a

1, a2, a3) = 0. (5.9)

Not all of the equations (5.7), (5.8), and (5.9) are independent, e. g. we have the
following relationships for the polynomials in them:

P12(a
1, a2, a3) + P21(a

1, a2, a3) = 0,

P23(a
1, a2, a3) + P32(a

1, a2, a3) = 0,

P31(a
1, a2, a3) + P13(a

1, a2, a3) = 0.

The explicit expressions for these polynomials are given in a machine-readable form
in the ancillary file polynomials.txt.

The equations (5.7), (5.8), (5.9) along with the equation (5.4) are sufficient for
finding a unit vector a corresponding to the minimum of D̄ 2 in (5.3). This minimum
does exist due to the Weierstrass’s extreme value theorem (see [15]) since D̄ 2 in
(5.3) is a continuous function on the unit sphere (5.4), which is a compact set. We
say that the solution given by the equations (5.7), (5.8), (5.9), and (5.4) is almost

analytic since it is not given by explicit formulas.

6. Summary and conclusions.

Once the vector a solving the equations (5.7), (5.8), (5.9), and (5.4) and providing
the minimal value for D̄ 2 in (5.3) is found (either numerically or by means of
symbolic computations), we apply it in order to calculate c in (4.28). Then we
substitute c into (4.16) and calculate b. Using a and b, we calculate ρi in (4.3).
And finally, we substitute ρi into (4.7) and calculate the radius ρ of the cylinder
best fitting the points X1, . . . , Xn which were initially given.

The above solution of the cylindrical regression problem is a little bit more close
a completely analytic solution than the original one in [12]. We expect that
some day, using prospective computers and packages for symbolic computations,
one would be able to resolve the equations (5.7), (5.8), (5.9), and (5.4) analytically
in their general form, i. e. keeping symbolic coefficients D1111, D2222, D3333, D1112,
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D1113, D1222, D2223, D1333, D2333, D1122, D1133, D2233, D1123, D1223, D1233 in
(5.3). But even in this case it’s quite likely that the solution obtained would be
very huge and not human-observable.
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