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HADAMARD MATRICES IN {0,1} PRESENTATION

AND AN ALGORITHM FOR GENERATING THEM.

Ruslan Sharipov

Abstract. Hadamard matrices are square n×n matrices whose entries are ones and
minus ones and whose rows are orthogonal to each other with respect to the standard
scalar product in R

n. Each Hadamard matrix can be transformed to a matrix whose
entries are zeros and ones. This presentation of Hadamard matrices is investigated
in the paper and based on it an algorithm for generating them is designed.

1. Introduction.

Hadamard matrices are known for n = 1, for n = 2, and for n = 4 q, where q ∈ N

and N is the set of positive integers. However it is not yet known if they do exist for
all q ∈ N (see [1]). Hadamard matrices are associated with Hadamard’s maximal
determinant problem (see [2] and [3]) and solve this problem for n = 4 q, where
q ∈ N. For the general case n ∈ N Hadamard’s maximal determinant problem is
yet unsolved. Its simplified version is suggested in [4].

Let H be an n×n Hadamard matrix. By definition its rows considered as vectors
in R

n are orthogonal to each other with respect to the standard scalar product in
R

n. The same is valid for its columns. The proof is elementary. Indeed, since
|ri|

2 = n for each row ri treated as a vector, the orthogonality of rows implies

n∑

k=1

Hik Hjk = n δij , (1.1)

where δij is the Kronecker delta (see § 23 in Chapter I of [5]). The equality (1.1)
means HH⊤ = n I, where H⊤ is the transpose of H and I is the identity matrix.
Then H (H⊤/n) = I and H−1 = H⊤/n, which yields the equalities (H⊤/n)H = I
and H⊤ H = n I. The latter one is written as

n∑

k=1

Hki Hkj = n δij . (1.2)

The equality (1.2) is exactly the orthogonality condition for the columns of H .
For each particular n ∈ N the set of n×n Hadamard matrices is invariant under

the following transformations (see [6]):

1) permutation of rows/columns;
2) multiplication of any row/column by −1.
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2 RUSLAN SHARIPOV

Using these transformations each Hadamard matrix can be brought to a form where
its first row and its first column both are filled with ones only (see [6]):

H =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 1 1 . . . 1
1

{−1, 1}
1
...
1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (1.3)

Almost all Hadamard matrices in Sloan’s library [7] are presented in the form (1.3).
By writing {−1, 1} in (1.3) we indicate that the lower right block of the matrix

is built by ones and minus ones. The next trick is to subtract the first row from
each of the other rows in (1.3). As a result we get the matrix

M =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 1 1 . . . 1
0

{−2, 0}
0
...
0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (1.4)

Let’s denote through H̃ the lower right block of the matrix (1.4) divided by −2:

H̃ =
1

−2
· {−2, 0} = {0, 1} . (1.5)

The transformation H −→ H̃ given by (1.3), (1.4), (1.5) is well-known (see [2]).

Definition 1.1. The matrix H̃ produced from a Hadamard matrix H of the form
(1.3) according to (1.4) and (1.5) is called the {0, 1} presentation of the matrix H .

It is obvious that the transformation H −→ H̃ is invertible, i. e. each matrix H
of the form (1.3) is associated with a unique matrix H̃ of the form (1.5) and vice
versa. Our goal in this paper is to study {0, 1} presentation of Hadamard matrices
and to design an algorithm for generating them in this presentation.

2. Gram matrices.

Definition 2.1. For any ordered list of vectors e1, . . . , es in a Euclidean space E

their Gram matrix is the following matrix composed by their mutual scalar products
(see [8] or § 1 in Chapter V of [9]):

G =

∥
∥
∥
∥
∥
∥
∥

(e1, e1) . . . (e1, es)
...

. . .
...

(es, e1) . . . (es, es)

∥
∥
∥
∥
∥
∥
∥

.

Let r̃1, . . . , r̃n−1 be rows of the matrix H̃ in (1.5) considered as vectors in R
n−1.

If we enumerate the entries of H in (1.3) starting from zero, then we can write

r̃i = f(ri), i = 1, . . . , n− 1, (2.1)
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where r0, r1, . . . , rn−1 are the rows of the matrix (1.3) and f : H −→ H̃ is the
mapping given by (1.3), (1.4), and (1.5). From (2.1) we derive

(r̃i, r̃j) =
(ri − r0

−2
,
rj − r0

−2

)

. (2.2)

The equality (2.2) holds since the initial entry in almost all rows of the matrix (1.4)
is zero. Expanding the right hand side of (2.2), we get

(r̃i, r̃j) =
(ri, rj)

4
−

(r0, ri)

4
−

(r0, rj)

4
+

(r0, r0)

4
. (2.3)

Since H is a Hadamard matrix, taking into account the renumeration of the entries
of H , from (1.1) we derive the following four equalities:

(ri, rj) = n δij , (ri, r0) = 0,
(2.4)

(rj , r0) = 0, (r0, r0) = n.

Applying (2.4) to (2.3) yields

(r̃i, r̃j) =
n (δij + 1)

4
. (2.5)

The equality (2.5) means that we have proved the following theorem.

Theorem 2.1. For any m×m Hadamard matrix in {0, 1} presentation with m > 1
its size m = 4 q− 1, where q ∈ N, and the Gram matrix associated with the rows of

this Hadamard matrix looks like

G =

∥
∥
∥
∥
∥
∥
∥
∥

b a . . . a
a b . . . a
...

...
. . .

...

a a . . . b

∥
∥
∥
∥
∥
∥
∥
∥

, (2.6)

where a = (m+ 1)/4 = q and b = (m+ 1)/2 = 2 q.

The calculations (2.2), (2.3), (2.4), and (2.5) are invertible. Therefore Theo-
rem 2.1 can be strengthened as follows.

Theorem 2.2. A square m×m matrix with m = 4 q − 1 whose entries are zeros

and ones is a Hadamard matrix in {0, 1} presentation if an a only if the Gram

matrix associated with its rows is of the form (2.6), where a = (m+ 1)/4 = q and

b = (m+ 1)/2 = 2 q.

Proof. The necessity part in the statement of Theorem 2.2 is proved by Theo-
rem 2.1. Let’s prove the sufficiency.

Going backward from (1.5) to (1.4), we insert the initial column of zeros to H̃.
Since |r̃i|

2 = b = (m + 1)/2 = 2 q = n/2 in (2.6), upon this step we get an m × n
matrix with equal number of zeros and ones in each row. Then we multiply this
matrix by −2, insert the initial row composed by ones, and add this initial row
to each of the other rows. As a result we get a matrix of the form (1.3). Each
of its rows, except for the initial one, comprises equal number of ones and minus



4 RUSLAN SHARIPOV

ones. This means that the equalities (ri, r0) = 0 and (rj , r0) = 0 in (2.4) are
fulfilled. The equality (r0, r0) = n in (2.4) holds since the initial row r̃0 in (1.3) is
composed by ones only. The equality (ri, rj) = n δij in (2.4) is derived from (2.5)
using (2.3), while (2.5) itself follows from (2.6) since a = (m+ 1)/4 = q = n/4 and
b = (m + 1)/2 = 2 q = n/2. The whole set of the equalities (2.4) is equivalent to
(1.1) upon passing to the standard enumeration of the entries of H , thus proving
that the matrix H in (1.3) produced backward from (1.5) through (1.4) is a regular
Hadamard matrix. Theorem 2.2 is proved. �

Now let’s consider the columns of the matrix H̃ in (1.5). We denote them through
c̃1, . . . , c̃n−1. If we enumerate the entries of the matrix H in (1.3) starting from
zero, then for c̃1, . . . , c̃n−1 we can write

c̃i = f(ci), i = 1, . . . , n− 1, (2.7)

where c0, c1, . . . , cn−1 are the columns of the matrix (1.3) and f : H −→ H̃ is the
mapping given by (1.3), (1.4), and (1.5). From (2.7) we derive

(c̃i, c̃j) =

n−1∑

k=1

(Hki −H0i)

−2

(Hkj −H0j)

−2
=

n−1∑

k=1

(Hki −H0i) (Hkj −H0j)

4
.

The right hand side of this equality can be transformed as

n−1∑

k=1

(Hki −H0i) (Hkj −H0j)

4
=

n−1∑

k=0

(Hki −H0i) (Hkj −H0j)

4

since the term with k = 0 in the sum does vanish. As a result we get

(c̃i, c̃j) =
n−1∑

k=0

(Hki −H0i) (Hkj −H0j)

4
. (2.8)

But H0i = Hk0 = 1 and H0j = Hk0 = 1 due to (1.3). Therefore from (2.8) we get

(c̃i, c̃j) =

n−1∑

k=0

(Hki −Hk0) (Hkj −Hk0)

4
. (2.9)

Expanding the right hand side of (2.9), we write

(c̃i, c̃j) =

n−1∑

k=0

Hki Hkj

4
−

n−1∑

k=0

Hki Hk0

4
−

−

n−1∑

k=0

Hkj Hk0

4
+

n−1∑

k=0

Hk0 Hk0

4
.

(2.10)

Each sum in (2.10) is expressed through the scalar product of some definite pair of
columns of the matrix (1.3). Indeed we have

(c̃i, c̃j) =
(ci, cj)

4
−

(ci, c0)

4
−

(cj , c0)

4
+

(c0, c0)

4
. (2.11)
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The equality (2.11) is similar to (2.3). Since H is a Hadamard matrix, taking into
account the renumeration of the entries of H , from (1.2) we derive

(ci, cj) = n δij , (ci, c0) = 0,
(2.12)

(cj , c0) = 0, (c0, c0) = n.

Applying (2.12) to (2.11), we derive an equality which is similar to (2.5):

(c̃i, c̃j) =
n (δij + 1)

4
. (2.13)

The equality (2.13) means that we have proved a theorem similar to Theorem 2.1.

Theorem 2.3. For any m×m Hadamard matrix in {0, 1} presentation with m > 1
its size m = 4 q−1, where q ∈ N, and the Gram matrix associated with the columns

of this Hadamard matrix looks like

G =

∥
∥
∥
∥
∥
∥
∥
∥

b a . . . a
a b . . . a
...

...
. . .

...

a a . . . b

∥
∥
∥
∥
∥
∥
∥
∥

, (2.14)

where a = (m+ 1)/4 = q and b = (m+ 1)/2 = 2 q.

Note that the Gram matrices in (2.14) and (2.6) do coincide though their entries
are defined differently. A theorem similar to Theorem 2.2 is formulated as follows.

Theorem 2.4. A square m×m matrix with m = 4 q − 1 whose entries are zeros

and ones is a Hadamard matrix in {0, 1} presentation if an a only if the Gram

matrix associated with its columns is of the form (2.6), where a = (m + 1)/4 = q
and b = (m+ 1)/2 = 2 q.

Proof. The necessity part in the statement of Theorem 2.4 is proved by Theo-
rem 2.3. Let’s prove the sufficiency.

When producing the matrix (1.3) backward from the matrix (1.5) each one in
the matrix (1.5) becomes minus one in the matrix (1.3) and each zero in the matrix
(1.5) becomes one in the matrix (1.3). Extra ones in the initial row and in the
initial column of the matrix (1.5) are inserted independently. Therefore the equality
|c̃i|

2 = b = (m + 1)/2 = 2 q = n/2 for the diagonal entries in (2.14) means that
the number of ones is equal to the number of minus ones in each column of the
matrix (1.5), except for the initial column c0. This yields the equalities (ci, c0) = 0
and (cj , c0) = 0 in (2.12). The equality (c0, c0) = n in (2.12) holds since the
initial column of the matrix (1.3) is composed by ones only. Then the equality
(ci, cj) = n δij in (2.12) is derived from (2.13) using (2.11), while (2.13) itself
follows from (2.14) since a = (m+ 1)/4 = q = n/4 and b = (m+ 1)/2 = 2 q = n/2.
The whole set of the equalities (2.12) is equivalent to (1.2) upon passing to the
standard enumeration of the entries of H , thus proving that the matrix H in (1.3)
produced backward from (1.5) through (1.4) is a regular Hadamard matrix. �
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3. Partitions and groupings

in rows of {0, 1} Hadamard matrices.

Due to Theorem (2.2) and Theorem (2.4) the whole set of Hadamard matrices
in {0, 1} presentation is invariant under permutation of rows and columns of the
matrices. Any two matrices produced from each other by means of these transfor-
mations are called equivalent. Below they are threated as inessentially different.

Let H be some particular 15× 15 Hadamard matrix in {0, 1} presentation. We
choose the following one as an example:

H =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 0 1 0 0 0 1 0 0 0 1 1 1
1 0 0 1 0 1 1 0 1 1 0 0 1 1 0
0 1 0 0 1 1 0 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 1 0 1 0
1 1 0 0 0 1 1 0 0 0 1 1 1 0 1
0 0 1 1 0 0 1 1 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 0 1 0 1 1 0 1
0 0 1 0 1 1 1 0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 1 0
0 1 0 1 0 1 0 1 1 0 0 1 0 1 1
1 0 1 0 0 1 0 1 0 1 1 0 0 1 1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(3.1)

The first row of the matrix (3.1) is partitioned into two groups — the group of ones
and the group of zeros next to it:

8

︷ ︸︸ ︷
7

︷ ︸︸ ︷
∥
∥
∥
∥

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∥
∥
∥
∥

(3.2)

We use the Maxima programming language (see [10]) in order to present the parti-
tion structure (3.2). Each of the two groups (3.2) is presented by two numbers. The
first number is the ordering number of the group in the row. The second number is
the number of elements in the group. As a result the first row of the matrix (3.1)
is presented through the following code:

r1:[[0,8],[1,7]]$

Square brackets in Maxima programming language delimit lists. Therefore each
row of the matrix (3.1) is presented as a list of lists.

In the second row of the matrix (3.1) we see the following four groups:

4

︷ ︸︸ ︷
4

︷ ︸︸ ︷
4

︷ ︸︸ ︷
3

︷ ︸︸ ︷
∥
∥
∥
∥

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∥
∥
∥
∥

(3.3)

The first two groups in (3.3) are subordinate to the first group in (3.1), the last
two groups of (3.3) are subordinate to the second group in (3.1). Groups with
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even numbers correspond to ones in the matrix and the groups with odd numbers
correspond to zeros. As a result we have the following code for the second row of
the matrix (3.1):

r2:[[0,4],[1,4],[2,4],[3,3]]$

Upon defining each row, the matrix H from (3.1) is presented as the list of its rows:

H:[r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15]$

The upper estimate for the number of groups in the n-th row of a matrix is
2n. However the actual number of groups in the row description is much smaller
since the groups with zero elements are not explicitly listed, though they implicitly
assumed. Here is the explicit group lists presentation for the matrix (3.1):

H:[[[0,8],[1,7]],

[[0,4],[1,4],[2,4],[3,3]],

[[0,3],[1,1],[2,1],[3,3],[4,1],[5,3],[6,3]],

[[0,1],[1,2],[2,1],[5,1],[6,2],[7,1],[8,1],[10,1],[11,2],

[12,2],[13,1]],

[[1,1],[2,1],[3,1],[5,1],[10,1],[12,1],[13,1],[14,1],[16,1],

[20,1],[22,1],[23,1],[24,1],[25,1],[27,1]],

[[2,1],[5,1],[7,1],[11,1],[20,1],[25,1],[26,1],[28,1],[32,1],

[41,1],[44,1],[46,1],[49,1],[50,1],[55,1]],

[[4,1],[10,1],[15,1],[23,1],[41,1],[50,1],[52,1],[57,1],[65,1],

[83,1],[88,1],[92,1],[98,1],[101,1],[110,1]],

[[9,1],[21,1],[30,1],[46,1],[83,1],[101,1],[104,1],[114,1],

[130,1],[167,1],[176,1],[185,1],[196,1],[203,1],[220,1]],

[[18,1],[43,1],[61,1],[92,1],[166,1],[203,1],[209,1],[228,1],

[261,1],[334,1],[353,1],[370,1],[392,1],[407,1],[440,1]],

[[37,1],[87,1],[122,1],[185,1],[332,1],[406,1],[418,1],[457,1],

[522,1],[668,1],[707,1],[740,1],[785,1],[815,1],[880,1]],

[[75,1],[174,1],[245,1],[370,1],[664,1],[813,1],[836,1],

[915,1],[1045,1],[1336,1],[1414,1],[1481,1],[1571,1],

[1630,1],[1760,1]],

[[151,1],[349,1],[490,1],[740,1],[1328,1],[1626,1],[1673,1],

[1831,1],[2091,1],[2673,1],[2828,1],[2962,1],[3142,1],

[3260,1],[3521,1]],

[[303,1],[698,1],[980,1],[1481,1],[2657,1],[3253,1],[3346,1],

[3662,1],[4183,1],[5346,1],[5657,1],[5924,1],[6284,1],

[6520,1],[7043,1]],

[[607,1],[1396,1],[1961,1],[2962,1],[5315,1],[6506,1],[6693,1],

[7324,1],[8366,1],[10693,1],[11315,1],[11848,1],[12569,1],

[13040,1],[14086,1]],

[[1214,1],[2793,1],[3922,1],[5925,1],[10631,1],[13012,1],

[13387,1],[14648,1],[16733,1],[21386,1],[22630,1],[23697,1],

[25139,1],[26080,1],[28172,1]]]$

The above presentation of the matrix (3.1) looks more complicated than the
regular presentation of matrices in Maxima. However this presentation is more
convenient from the algorithmic point of view. Below we shall call it the “group
lists presentation” or the “partition lists presentation.
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4. An algorithm for generating Hadamard matrices.

The partition lists presentation of Hadamard matrices is the basis for the algo-
rithm suggested below. We shall not describe the algorithm in full details verbally.
Instead we provide the source code of it using Maxima programming language (see
[10]). Hadamard matrices are generated by the following code:

HM size:m$

HM quarter:(HM size+1)/4$

q:HM quarter$

HM row[1]:[[0,2*q],[1,2*q-1]]$

HM row[2]:[[0,q],[1,q],[2,q],[3,q-1]]$

HM matrix num:1$

HM stream:openw("output file.txt")$

HM make row(3)$

close(HM stream)$

Most of this code initializes global variables. The first variable HM size defines the
size of Hadamard matrices to be generated. It is given by m which is any positive
integer greater than or equal to 3 and obeying the condition

m = 3 mod 4.

Otherwise an error message is generated.
The partition lists of the first two rows of the matrix are predefined. They are

stored in the variables HM row[1] and HM row[2] (compare with (3.2) and (3.3)).
The third row and all other rows of Hadamard matrices are produced by calling the
recursive function HM make row() with the argument 3. The whole job is practically
done by this function. Below is its code:

HM make row(i):=block

([n,s,k,l,q,dummy,kk,y,dpnd,indp,nrd,nri,r,kr,qq,eq,eq list,j,

LLL,RLL,RVV,RRV,subst list],

if not integerp(HM size) or HM size<3 or mod(HM size,4)#3

then

(

print(printf(false,"Error: m=~a is incorrect size for

Hadamard matrices",HM size)),

return(false)

),

if HM size=3

then

(

HM row[2]:[[0,1],[1,1],[2,1]],

HM row[3]:[[1,1],[2,1],[4,1]],

HM output matrix(),

return(false)

),

print(printf(false,"i=~a",i)),

n:length(HM row[i-1]),

k:makelist(100,y,n),
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l:makelist(100,y,n),

q:makelist(100,y,n),

for s:1 step 1 thru n do

(

l[s]:HM row[i-1][s][1],

q[s]:HM row[i-1][s][2]

),

/*-- prepare the equation list --*/

eq list:[],

var list:[],

eq:0,

for s:1 step 1 thru n do

(

eq:eq+HM V[i][s],

var list:endcons(HM V[i][s],var list)

),

eq list:endcons(eq=2*HM quarter,eq list),

qq:1,

for j:i-1 step -1 thru 1 do

(

eq:0,

for s:1 step 1 thru n do

if evenp(floor(l[s]/qq)) then eq:eq+HM V[i][s],

eq list:endcons(eq=HM quarter,eq list),

qq:qq*2

),

/*----- solve the equations -----*/

linsolve params:false,

HM SOL[i]:linsolve(eq list,var list),

LLL:map(lhs,HM SOL[i]),

dpnd:[],

for r:1 step 1 thru length(LLL) do

dpnd:endcons(args(LLL[r])[1],dpnd),

RLL:map(rhs,HM SOL[i]),

RVV:map(listofvars,RLL),

RRV:{},
for r:1 step 1 thru length(RVV) do

RRV:union(RRV,setify(RVV[r])),

RRV:listify(RRV),

indp:[],

for r:1 step 1 thru length(RRV) do

indp:endcons(args(RRV[r])[1],indp),

/*-- initiate the multiindex loop --*/

nrd:length(dpnd),

nri:length(indp),

kr::makelist(0,y,nri+1),

for dummy:1 step 1 while kr[nri+1]=0 do

(

subst list:[],



10 RUSLAN SHARIPOV

for r:1 step 1 thru nri do

(

s:indp[r],

k[s]:kr[r],

kk[s]:q[s]-k[s],

subst list:endcons(HM V[i][s]=k[s],subst list)

),

for r:1 step 1 thru nrd do

(

s:dpnd[r],

k[s]:psubst(subst list,RLL[r]),

kk[s]:q[s]-k[s]

),

/*----- create a new row -----*/

HM row[i]:[],

for s:1 step 1 thru n do

(

if k[s]#0 then HM row[i]:endcons([2*l[s],k[s]],HM row[i]),

if kk[s]#0 then HM row[i]:endcons([2*l[s]+1,kk[s]],HM row[i])

),

if HM sc prods ok(i)

then

if i=n

then HM output matrix()

else HM make row(i+1),

/*--- increment the multiindex ---*/

if nri=0 then kr[nri+1]:1,

for r:1 step 1 thru nri do

(

if r=1 then kr[1]:kr[1]+1,

s:indp[r],

if kr[r]>q[s] then (kr[r]:0, kr[r+1]:kr[r+1]+1)

)

)

)$

There are two auxiliary functions which are called from within the above code.
One of them is used in order to output generated matrices.

HM output matrix():=block

([s,LL],

LL:[],

for s:1 step 1 thru HM size do LL:endcons(HM row[s],LL),

printf(HM stream,"HM ~a ~a:~a$~%",HM size,HM matrix num,LL),

HM matrix num:HM matrix num+1

)$

The second function verifies if the row data prepared for output are correct.

HM sc prods ok(i):=block

([n,result,ss,s,j,qq],
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n:length(HM row[i]),

result:true,

ss:0,

for s:1 step 1 thru n do

(

result:result and (HM row[i][s][2]>0)

),

return(result)

)$

5. Running the code and results.

The above code was run in Maxima, version 5.42.2, on Linux platform of Ubuntu
16.04 LTS using laptop computer DEXP Atlas H161 with the processor unit Intel
Core i7-4710MQ. Here we focus on performance of the algorithm.

The case m = 3 is trivial. In this case the algorithm terminated instantly and
produced exactly one Hadamard matrix.

The case m = 7 is less trivial. In this case the algorithm also terminated
instantly and produced 25 matrices. All of them were tested and turned out to be
correct 7× 7 Hadamard matrices in {0, 1} presentation.

The case m = 11. In this case the algorithm terminated upon running for
3 minutes and 45 seconds. It produced 60481 matrices. Ten of these matrices
randomly chosen were tested and turned out to be correct 11 × 11 Hadamard
matrices in {0, 1} presentation. The matrix production rate is

v = 16128 matrices/minute.

The case m = 15. In this case the algorithm did not terminate during observ-
ably short time. Upon running for 16 minutes and 49 seconds it produced 162500
matrices. Ten of these matrices randomly chosen were tested and turned out to be
correct 15× 15 Hadamard matrices in {0, 1} presentation. The production rate is

v = 9663 matrices/minute.

The case m = 19. Again the algorithm did not terminate during observably
short time. Upon running for 1 minute and 40 seconds it produced 10000 matrices.
Ten randomly chosen matrices were tested and passed the test. The rate is

v = 6000 matrices/minute.

The case m = 23 is similar to the previous one. The algorithm did not terminate
during observably short time. 10000 matrices were generated for 2 minutes and 43
seconds. Ten randomly chosen matrices were tested. They turned out to be correct
23× 23 Hadamard matrices in {0, 1} presentation. The production rate is

v = 3680 matrices/minute.

The case m = 27 is absolutely different. In this case the algorithm ran overnight
for several hours but did not produce any matrices. So m = 27 is a practical limit
for the algorithm.
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One of the features of the present algorithm is that it solves linear equations
arising from the form of the Gram matrix (2.6) using Maxima’s linsolve func-
tion instead of scanning over the ranges of variables. However it does not solve
inequalities in this manner (see HM row[i][s][2]>0 in the code of the function
HM sc prods ok above). Probably using some module for solving linear inequalities
along with linear equations could improve the algorithm and m = 27 would not be
a limit for it any more.

4. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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