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EVOLUTION PATTERNS IN COLLATZ PROBLEM.

Ruslan Sharipov

Abstract. The concept of evolution patterns is introduced for Collatz sequences

and it is shown that any finite evolution pattern is implemented in some particular

Collatz sequence.

1. Introduction.

Wikipedia [1] says that the Collatz conjecture also known as the 3n + 1 prob-
lem was formulated by Lothar Collatz in 1937. However Wikipedia gives a lot of
different names of this conjecture associated with different persons and not only
with persons: the Ulam conjecture, Kakutani’s problem, the Thwaites conjecture,
Hasse’s algorithm, the Syracuse problem.

The statement of the Collatz conjecture is based on the mapping f : N → N

which is defined as follows in the set of positive integers N:

f(n) =

{

3n+ 1 if n is odd,

n/2 if n is even.
(1.1)

Starting with an arbitrary number m ∈ N, the sequence of numbers ai is built such
that a1 = m and ai+1 = f(ai) for all i ∈ N. For instance in the case of m = 1, we
get the sequence of numbers

1, 4, 2, 1, 4, 2, 1, . . . , (1.2)

which repeats periodically with the period T = 3. The cases m 6= 1 are described
by the Collatz conjecture.

Conjecture 1.1 (Collatz). For any positive integer m ∈ N the sequence of num-

bers ai defined using the mapping (1.1) through a1 = m and ai+1 = f(ai) for

all i ∈ N reaches the number 1 ( i. e. ak = 1 for some k ∈ N ) and then repeats
periodically as in (1.2).

There are many research works devoted to the Collatz conjecture 1.1, see [2]
and [3]. The year of 2021 and early 2022 demonstrated rather high publication
activity in this field, see [4–33]. We are not going to analyze all of these papers
hear. Our goal is to show that the evolution of integers in Collatz sequences can be
arbitrarily complicated in such a way that any predefined finite evolution pattern
can be implemented in some Collatz sequence.
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2. Evolution patterns.

Lemma 2.1. Any positive even integer n can be uniquely presented as n = 2s ·m,

where m and s are two positive integers and m is odd.

The proof consists in iteratively dividing n by 2 until the odd number m is
reached: n → n/2 → n/22 → . . . → n/2s = m.

Lemma 2.2. Any positive odd integer n can be uniquely presented as n = 2s ·m−1,
where m and s are two positive integers and m is odd.

The proof consists in applying Lemma 2.1 to the even number n+ 1.
Let’s consider the Collatz evolution initiated by the odd number a1 = 2s ·m− 1.

Due to (1.1) we get
a2 = f(a1) = 3 a1 + 1 = 3 · 2s ·m− 2. (2.1)

The number a2 is even, therefore

a3 = f(a2) = a2/2 = 31 · 2s−1 ·m− 1. (2.2)

If s− 1 6= 0, then a3 is again odd and we can repeat the steps (2.1) and (2.2):

a4 = f(a3) = 3 a3 + 1 = 32 · 2s−1 ·m− 2,

a5 = f(a4) = a4/2 = 32 · 2s−2 ·m− 1.
(2.3)

Now due to (2.2) and (2.3) it is easy to see that

a1+2s = 3s ·m− 1. (2.4)

The number (2.4) is even.

Definition 2.1. The Collatz evolution from an odd number a1 = 2s ·m− 1 to the
even number a1+2s = 3s ·m− 1 is called the s-evolution.

Applying Lemma 2.1 to the even number (2.4), we get

a1+2s = 3s ·m− 1 = 2q · ñ, (2.5)

where q > 1 and ñ is a positive odd number. Applying the Collatz evolution to the
even number (2.5), we find

a1+2s+q = a1+2s/2
q = ñ. (2.6)

Definition 2.2. The Collatz evolution from an even number a1+2s = 2q · ñ to the
odd number a1+2s+q = ñ is called the q-evolution.

Since the number (2.6) is again odd, we can apply the steps from (2.1) to (2.6)
to it. As a result we see that we have proved the following theorem.

Theorem 2.1. The Collatz evolution of any odd number is presented by an alter-

nating sequence of s and q evolutions:

s1, q1, s2, q2, . . . , sr, qr, sr+1, . . . . (2.7)
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Definition 2.3. The infinite sequence of positive integers (2.7) is called the Collatz
evolution pattern of a given odd number.

For instance the evolution pattern of the odd number 1 is given by the following
trivial periodic sequence

1, 1, 1, . . . , 1 . . . . (2.8)

The sequence (2.8) is easily derived from (1.2).

Definition 2.4. Any finite initial part of the Collatz evolution pattern (2.7) is
called the finite Collatz evolution pattern of a given odd number:

s1, q1, s2, q2, . . . , sr, qr, sr+1. (2.9)

Our further goal is to prove the following theorem.

Theorem 2.2. For any finite sequence of positive integers (2.9) there is an odd

number whose finite Collatz evolution pattern coincides with (2.9).

3. Diophantine equations associated with sqs-patterns.

Assume that r = 1 in (2.9). Then we have the following finite Collatz evolution
pattern: s1, q1, s2. The actual evolution associated with this pattern looks like

2s1 ·m1 − 1
s1−−−−→ 3s1 ·m1 − 1

q1
−−−−→ 2s2 ·m2 − 1. (3.1)

Relying on (3.1), we can write the following equality:

3s1 ·m1 − 1 = 2q1 · (2s2 ·m2 − 1). (3.2)

The equality (3.2) can be rewritten as

2q1+s2 ·m2 − 3s1 m1 = 2q1 − 1. (3.3)

Since s1, q1, and s2 are known, we can treat (3.3) as a linear Diophantine equation
with respect to the variables m1 and m2.

The theory of linear Diophantine equations is given in Section 2.1 of Chapter I.2
in the book [34]. There one can find the following theorem.

Theorem 3.1. Let a, b, c be integers, a and b nonzero. Consider the linear Dio-

phantine equation

a x+ b y = c (3.4)

1. The equation (3.4) is solvable in integers if and only if the greatest common

divisor d = GCD(a, b) divides c.
2. If (x, y) = (x0, y0) is a particular solution to (3.4), then every integer solution

is of the form

x = x0 +
b

d
· t, y = y0 −

a

d
· t, (3.5)

where t is an integer.

3. If c = GCD(a, b) and if |a| or |b| is different from 1, then a particular solution

(x, y) = (x0, y0) in (3.5) can be found such that |x0| < |b| and |y0| < |a|.



4 RUSLAN SHARIPOV

Comparing (3.3) with (3.4), we find that in our particular case

a = 2q1+s2 , b = −3s1 , c = 2q1 − 1, (3.6)

i. e. the equation (3.3) is written as

2q1+s2 · x− 3s1y = 2q1 − 1. (3.7)

From (3.6) we derive
d = GCD(a, b) = 1. (3.8)

Applying Item 1 from Theorem 3.1 to (3.8), we derive the following theorem.

Theorem 3.2. For any sequence of positive integers (2.9) the Diophantine equation

(3.7) is solvable.

Then applying Item 2 from Theorem 3.1 to the equation (3.7), we find that the
formulas (3.5) are written as

x = x0 − 3s1 t, y = y0 − 2q1+s2 t, (3.9)

The second equality (3.9) means that we can choose a unique particular solution
(x0, y0) of the equation (3.3) such that

0 6 y0 < 2q1+s2 . (3.10)

The option y0 = 0 is excluded since in this case we would have

x0 =
2q1 − 1

2q1+s2
,

where

0 <
2q1 − 1

2q1+s2
< 1, (3.11)

which would mean that x0 is not integer. Therefore the inequalities in (3.10) are
rewritten as

0 < y0 < 2q1+s2 . (3.12)

Since (x0, y0) is a solution of the Diophantine equation (3.7), we have

x0 =
3s1

2q1+s2
y0 +

2q1 − 1

2q1+s2
. (3.13)

Applying (3.12) to (3.13), we get

2q1 − 1

2q1+s2
< x0 < 3s1 +

2q1 − 1

2q1+s2
. (3.14)

Taking into account that x0 is an integer number and taking into account the
inequalities (3.11), from (3.14) we derive

0 < x0 6 3s1 . (3.15)

Summarizing the above considerations, we can formulate the following theorem.
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Theorem 3.3. For any sequence of positive integers (2.9) the Diophantine equa-

tion (3.7) has a unique particular solution (x0, y0) such that x0 and y0 obey the

inequalities (3.15) and (3.12).

Theorem 3.3 is similar to Item 3 in Theorem 3.1. Relying on Theorem 3.3, we
can introduce the following two functions

x0 = X0(s1, q1, s2), y0 = Y0(s1, q1, s2). (3.16)

Substituting (3.16) into the equation (3.7), we get

2q1+s2 · x0 − 3s1y0 = 2q1 − 1. (3.17)

For any sequence of positive integers (2.9) the first term in (3.17) is even, the
coefficient 3s1 is odd, and the right side 2q1 − 1 is also odd. Therefore y0 in (3.17)
should be odd. We have proved the following theorem.

Theorem 3.4. If the arguments of the function Y0(s1, q1, s2) are positive, then its

value is positive and odd.

The values of the function X0(s1, q1, s2) can be either even or odd. However,
solving the Diophantine equation (3.3), we need to get odd numbers m1 and m2.
Therefore we should choose proper values of t in (3.9):

m1 =

{

Y0(s1, q1, s2) + 2q1+s2 · 2 t if X0(s1, q1, s2) is odd,

Y0(s1, q1, s2) + 2q1+s2 · (2 t+ 1) if X0(s1, q1, s2) is even,
(3.18)

m2 =

{

X0(s1, q1, s2) + 3s1 · 2 t if X0(s1, q1, s2) is odd,

X0(s1, q1, s2) + 3s1 · (2 t+ 1) if X0(s1, q1, s2) is even,
(3.19)

The formulas (3.18) and (3.19) provide the required odd numbersm1 andm2 solving
the equation (3.3). Therefore the odd number n = 2s1 ·m1 − 1 proves Theorem 2.2
for the case r = 1 in (2.9).

The functions X0(s1, q1, s2) and Y0(s1, q1, s2) in (3.16) cannot be expressed by
formulas. However they can be computed using Euclidean algorithm.

Dioph solve:=proc(A,B,C) option remember:

local AA,BB,XY,q:

if B=0 then return [C/A,0]

elif A=0 then return [0,-C/B]

elif A<B

then

BB:=irem(B,A,’q’):

XY:=procname(A,BB,C):

return [XY[1]+q*XY[2],XY[2]]

else

AA:=irem(A,B,’q’):

XY:=procname(AA,B,C):

return [XY[1],XY[2]+q*XY[1]]

end if

end proc:
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The above code solves the Diophantine equation Ax − B y = C with A > 0 and
B > 0. Below is the code for the function Y0(s1, q1, s2).

Y0:=proc(s1,q1,s2) option remember:

local A,B,C,XY,YY:

A:=2^(q1+s2):

B:=3^s1:

C:=2^q1-1:

XY:=Dioph solve(A,B,C):

YY:=XY[2]:

if YY<0

then return YY+(iquo(abs(YY),A)+1)*A

elif YY>=A

then return YY-iquo(YY,A)*A

else

return YY

end if

end proc:

And finally we provide the code for the function X0(s1, q1, s2).

X0:=proc(s1,q1,s2) option remember:

local A,B,C,XY,XX,YY:

A:=2^(q1+s2):

B:=3^s1:

C:=2^q1-1:

XY:=Dioph solve(A,B,C):

XX:=XY[1]:

YY:=XY[2]:

if YY<0

then return XX+(iquo(abs(YY),A)+1)*B

elif YY>=A

then return XX-iquo(YY,A)*B

else

return XX

end if

end proc:

All of the above code is given using the programming language of the Maple package,
version 9.01. Maple is a trademark of Waterloo Maple Inc.

4. Long evolution sequences.

Let’s proceed to the case r = 2. In this case we have the long evolution sequence
s1, q1, s2, q2, s3 in (2.9) that subdivides into two short sequences

s1, q1, s2, s2, q2, s3. (4.1)

The sequences (4.1) generate two Diophantine equations similar to (3.7). The
solution of the first one is given by the formulas (3.18) and (3.19). Let’s write these
two formulas as follows:

m1 = M10 + 2q1+s2 · 2 t1, m2 = M̃20 + 3s1 · 2 t1. (4.2)
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The solution of the second Diophantine equation is given by similar formulas

m2 = M20 + 2q2+s3 · 2 t, m3 = M̃30 + 3s2 · 2 t. (4.3)

The formulas (4.2) and (4.3) produce a new Diophantine equation

2q2+s3 · t− 3s1 · t1 =
M̃20 −M20

2
(4.4)

with respect to the variables t1 and t. Note that M̃20 and M20 are odd. Therefore
the value of the fraction in the right hand side of the equation (4.4) is integer.

The equation (4.4) is very similar to (3.7). It is always solvable due to Item 1 of
Theorem 3.1 since GCD(2q2+s3 , 3s1) = 1. Its solution is written as

t1 = T20 + 2q2+s3 · t2, t = T̃21 + 3s1 · t2. (4.5)

Substituting (4.5) into the first equality (4.2) and into the second equality (4.3),
we derive

m1 = M11 + 2q1+q2+s2+s3 · 2 t2, m3 = M̃31 + 3s1+s2 · 2 t2, (4.6)

where

M11 = M10 + 2q1+s2 · 2T20, M̃31 = M̃30 + 3s2 · 2 T̃21. (4.7)

The formulas (4.6) and (4.7) serve the case r = 2 in (2.9). The odd number
n = 2s1 ·m1 − 1 proves Theorem 2.2 for this case.

The formulas (4.6) are similar to (4.2). Therefore we can increment r by 1,
complement the sequences (4.1) by s3, q3, s4, and write the formulas

m3 = M30 + 2q3+s4 · 2 t, m4 = M̃40 + 3s3 · 2 t. (4.8)

The equalities (4.6) and (4.8) produce a new Diophantine equation

2q3+s4 · t− 3s1+s2 · t2 =
M̃31 −M30

2
(4.9)

similar to (4.4). The equation (4.9) is similar to (3.7). It is always solvable due to
Item 1 of Theorem 3.1 since GCD(2q3+s4 , 3s1+s2) = 1. Its solution is written as

t2 = T30 + 2q3+s4 · t3, t = T̃31 + 3s1+s2 · t3. (4.10)

We substitute (4.10) into the first equality (4.6) and into the second equality (4.8).
As a result we get the equalities

m1 = M12 + 2q1+q2+q3+s2+s3+s4 · 2 t3, m4 = M̃41 + 3s1+s2+s3 · 2 t3, (4.11)

where

M12 = M11 + 2q1+q2+s2+s3 · 2T30, M̃41 = M̃40 + 3s3 · 2 T̃31. (4.12)
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Continuing the process we can go further by induction. Extending the sequence
of formulas (4.2), (4.6), and (4.11), we write

m1 = M1 r−1 + 2Qr · 2 tr, mr+1 = M̃r+11 + 3Sr · 2 tr (4.13)

The exponentials Qr and Sr are given by the formulas

Qr =

r
∑

i=1

qi +

r+1
∑

i=2

si, Sr =

r
∑

i=1

si. (4.14)

They obey the relationships which are used below in proving the inductive step:

Qr = Qr−1 + qr + sr+1, Sr = Sr−1 + sr. (4.15)

The recurrent relationships (4.15) are immediate from (4.14).

For r > 1 the quantities M1 r−1 and M̃r+11 in (4.13) are defined inductively:

M1 r−1 = M1 r−2 + 2Qr−1 · 2Tr0. (4.16)

M̃r+11 = M̃r+10 + 3sr · 2 T̃r1, (4.17)

where Tr0 and T̃r1 are defined by solving the Diophantine equation

2qr+sr+1 · t− 3Sr−1 · tr−1 =
M̃r1 −Mr0

2
(4.18)

whose general solution is taken in the following form:

tr−1 = Tr0 + 2qr+sr+1 · tr, t = T̃r1 + 3Sr−1 · tr. (4.19)

In (4.18) and in (4.17) we see the quantities Mr0 and M̃r+10 respectively, (4.12)
being a particular case of (4.18) and (4.17) for r = 3. These quantities are deter-
mined by the short sequence of positive integers sr, qr, sr+1 through the functions
X0 and Y0 defined in the previous section:

Mr0 =

{

Y0(sr, qr, sr+1) if X0(sr, qr, sr+1) is odd,

Y0(sr, qr, sr+1) + 2qr+sr+1 if X0(sr, qr, sr+1) is even,
(4.20)

M̃r+10 =

{

X0(sr, qr, sr+1) if X0(sr, qr, sr+1) is odd,

X0(sr, qr, sr+1) + 3sr if X0(sr, qr, sr+1) is even.
(4.21)

The formulas (4.20) and (4.21) mean that Mr0 and M̃r+10 are always odd.

The quantities M1 r−1 and M̃r+11 in (4.13) are defined inductively by means
of the formulas (4.16) and (4.17) for r > 1. The case r = 1 is the base of this
induction. In this case M1 r−1 turns to M10 which is given by the formula (4.20).
The case r = 1 is the base of induction for the formula (4.13) as well. In this case

M̃r+11 turns to M̃21, while (4.13) turns to (4.2). Therefore M̃21 = M̃20 and M̃20 is
given by the formula (4.21).
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In order to prove the formulas (4.13) now it is sufficient to prove the inductive
step r − 1 → r. Let’s replace r by r − 1 in (4.13) and assume that the formulas
obtained from (4.13) in such a way are valid:

m1 = M1 r−2 + 2Qr−1 · 2 tr−1, mr = M̃r 1 + 3Sr−1 · 2 tr−1 (4.22)

We complement these formulas with the formulas similar to (4.2) and (4.3):

mr = Mr0 + 2qr+sr+1 · 2 t, mr+1 = M̃r+10 + 3sr · 2 t. (4.23)

These formulas are derived from the Diophantine equation similar to (3.7) and
associated with the short sequence sr, qr, sr+1.

The second formula (4.22) and the first formula (4.23) represent the same quan-
tity mr. Equating their right hand sides, we obtain a Diophantine equation with
respect to tr−1 and t. This Diophantine equation coincides with (4.18). Its solution
is given by the formulas (4.19). The formulas (4.13) then are derived by substitut-
ing (4.19) into the first formula (4.22) and into the second formula (4.23) if we take
into account (4.15), (4.16), and (4.17).

Thus, the formulas (4.13) are proved. They serve the general case r > 1 in (2.9).
The first formula (4.13) determines the positive odd number m1 depending on an
arbitrary positive integer parameter tr. For any integer value of this parameter the
positive odd number n = 2s1 ·m1−1 proves Theorem 2.2 in the case of an arbitrary
finite sequence of positive integers (2.9).

5. Conclusions.

Theorem 2.2 is the main result of the present paper. It positively solves the
problem of a predefined Collatz evolution for finite length evolution patterns (2.9).
But this result cannot be easily transferred to the case of infinite patterns (2.7).

6. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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