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COMPLETE NORMALITY CONDITIONS

FOR THE DYNAMICAL SYSTEMS ON RIEMANNIAN MANIFOLDS.

Boldin A.Yu., Bronnikov A.A., Dmitrieva V.V., Sharipov R.A.

October 20, 1993

Abstract. New additional equations for the Newtonian dynamical systems on Riemannian manifolds are found. They
supplement the previously found weak normality conditions up to the complete normality conditions for Newtonian dynamical
systems.

1. Introduction.

Let M be the Riemannian manifold with metric tensor gij . The Newtonian dynamical system on M is the law of
motion of particles on M given by the following equations in local coordinates

(1.1) ẋi = vi v̇i = Φi(x1, . . . , xn, v1, . . . , vn)

The equations (1.1) realize the Newton’s second law for the mass point with unit mass. The concept of normality for
Newtonian dynamical systems was introduced and then investigated in the series of papers [1 - 5]. It is based on the
study of some hypersurface S in M . For some point P on S we define the initial data

(1.2) xi
∣

∣

t=0
= xi(P ) vi

∣

∣

t=o
= v(P )ni(P )

for the equations (1.1). Here ni(P ) are the components of unit normal vector at the point P and v(P ) in (1.2) is some
scalar function on S. The equations (1.1) and initial data (1.2) determine the particle flow starting at t = 0 from S
along the normal vector n(P ) with the initial velocity v(P ). For t > 0 these particles form another hypersurface St

and determine the family of diffeomorphisms ft : S −→ St.

Definition 1. The family of diffeomorphisms ft is called the normal shift along the trajectories of dynamical system
if the trajectories of (1.1) cross all hypersurfaces St along their normal vectors.

Definition 2. Newtonian dynamical system (1.1) is called the dynamical system accepting the normal shift of hyper-
surfaces if for any hypersurface S ⊂ M one can find the function v(P ) on S such that the family of diffeomorphisms
ft given by (1.1) and (1.2) is the normal shift of S.

The normality condition from definition 2 was first stated in [1] and [2]. By the analysis of this condition in [3] for
Euclidean case M = R

n two relatively independent normality conditions were derived: weak normality condition and
additional normality condition. Each of them is written in the form of the system of partial differential equations for
the functions Φi from (1.1). They two both form the sufficient condition for the normality condition from definition
2 to be fulfilled for the dynamical system (1.1).

In [5] the weak normality condition was generalized for the non-Euclidean case of an arbitrary Riemannian manifold
M . In this paper we generalize the additional normality condition from [3] for the case of Riemannian manifold and
we get the complete normality condition for (1.1) in form of aggregate of weak and additional normality conditions.
Here as in the Euclidean case of R

n the complete normality is sufficient but not necessary for the normality condition
from the definition 2.

Since it seems difficult to obtain the conditions equivalent to definition 2 and written in form of differential equations
for the functions Φi we shall replace the definition 2 by more strict definition 3.
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Definition 3. We say that dynamical system (1.1) satisfies the strong normality condition if for any hypersurface
S ⊂ M , for any choice of the point P0 ∈ S and for any real number v0 6= 0 one can find the function v(P ) such
that it is normalized by v(P0) = v0 and the family of diffeomorphisms defined by this function is the normal shift of
hypersurface S.

Note here that for to avoid the multivalued functions v(P ) one should always consider only connected and simply
connected hypersurfaces in definitions 2 and 3.

2. On the expansion of the algebra of tensor fields.

Systems of differential equations of the form (1.1) are usually connected with the vector fields on the manifolds. In
our case the right hand sides of (1.1) form the vector field on the tangent bundle TM for the manifold M . Digressing
for a while from the particular vector field given by (1.1) let us consider some vector V tangent to the tangent bundle

(2.1) V = X1
∂

∂x1
+ · · · + Xn ∂

∂xn
+ W 1

∂

∂v1
+ · · · + Wn ∂

∂xn

First n components of the vector (2.1) form the tangent vector X = π(V) to M . Other components of (2.1) after
some modification form another tangent vector Z = ρ(V) to M whose components are Zi = W i + Γi

jkvkXj. Two
linear maps π and ρ project the vector V onto the pair of vectors X and Z tangent to the manifold M .

Projections π and ρ applied to the vector fields on TM however will not give the vector fields on M . They give
the elements of quite other set: the expanded algebra of tensor fields on M . Exact definition of tensor field from such
algebra is the following.

Definition 4. Tensor field of expanded algebra is a map argument of which is a point of tangent bundle TM and
the value of which is in the tensor algebra build over the tangent space to M at the point being the projection of
argument from TM to M .

Expanded algebra of tensor fields is equipped with the natural operations of tensor product and contraction. It is
also equipped with two operations of covariant differentiation ∇i and ∇̃i. The detailed discussions of these features
of expanded algebra of tensor fields can be found in [5].

Each point of TM is the pair of point P ∈ M and tangent vector v at this point (vector of velocity). If we map
each point of TM onto the corresponding vector v then we get the vector field v of expanded algebra. From v we
construct the scalar field v = |v| of expanded algebra being the modulus of velocity. In addition to these two fields we
define the vector field N = |v|−1v that consists of unit vectors directed along the vector of velocity v. It is defined
only at that points of TM where v 6= 0. By means of the components of N we construct two projector valued fields

(2.2) Qi
k = NkN i P i

k = (δi
k − NkN i)

from the expanded algebra. Various relationships with projectors Q and P from (2.2) can be found in [5].
Replacing time derivatives of velocity in (1.1) by its covariant time derivatives we can rewrite (1.1) as follows

(2.3) ẋi = vi ∇tv
i = F i(x1, . . . , xn, v1, . . . , vn)

where F i = Φi +Γi
jkvkvj are the components of vector field F of expanded algebra known as a force field of Newtonian

dynamical system (2.3).

3. Weak and complete normality conditions.

For the dynamical system (2.3) we consider the Cauchy problem with initial data (1.2) on some hypersurface S.
Let us choose the local coordinates u1, . . . , un−1 on S. Solving the above Cauchy problem we obtain the family of
trajectories of the dynamical system (2.3) on M parameterized by u1, . . . , un−1. Variation of these variables defines
the following vectors τi tangent to M

(3.1) τi =
∂x1

∂ui

∂

∂x1
+ · · · +

∂xn

∂ui

∂

∂xn

on the trajectories of (2.3). Scalar products of τ1, . . . , τn−1 and N are the scalar functions ϕi = 〈τi,N〉 = gkqτ
k
i N q.

These functions define the mutual orientation of trajectories and the hypersurfaces St.
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Definition 5. Say that Newtonian dynamical system (2.2) satisfies the weak normality condition if each function
ϕi = ϕi(t) is the solution of linear homogeneous ordinary differential equation of second order for any choice of
parametric family of trajectories of it.

The main result of [5] is that the weak normality condition is equivalent to the following system of nonlinear partial
differential equations for the force field F of dynamical system

(3.2)

(v−1Fi + ∇̃i(F
kNk))P i

k = 0

(∇iFk + ∇kFi − 2v−2FiFk)NkP i
q+

+ v−1(∇̃kFiF
k − ∇̃kF rNkNrFi)P

i
q = 0

Let the weak normality condition in form of the equations (3.2) be fulfilled. Then for to get normality in the sense of
definitions 2 and 3 we should provide the following initial data

(3.3) ϕi

∣

∣

t=0
= 0 ϕ̇i

∣

∣

t=0
= 0

for the functions ϕi by the proper choice of function v(P ) = v(u1, . . . , un−1) in (1.2). There n(P ) is the unit normal
vector for the hypersurface S. From (1.2) we obtain

(3.4) N
∣

∣

t=0
= n(u1, . . . , un−1)

Because of (3.4) first part of the initial conditions (3.3) is satisfied for any choice of v(P ). Now let us proceed with
second part of initial conditions in (3.3)

(3.5) ϕ̇i

∣

∣

t=0
= ∇tτ

j
i Nj

∣

∣

t=0
+ gjkτk

i ∇tN
j
∣

∣

t=0

For ∇tN
j we use (3.15) and (3.19) from [5] and then we obtain ∇tN

j = v−1P j
q F q. For the covariant derivatives of

the vectors (3.1) we use (3.18) from [5]

∇tτ
j
i

∣

∣

t=0
=

∂2xj

∂t∂ui

∣

∣

t=0
+ Γj

pq

∂xp

∂ui
vq
∣

∣

t=0

Taking into account the initial data (1.2) we may transform this relationship into the following form

(3.6) ∇tτ
j
i

∣

∣

t=0
=

∂v

∂ui
nj
∣

∣

t=0
+ v

∂nj

∂ui

∣

∣

t=0
+ Γj

pqn
qτp

i

∣

∣

t=0

For the further transformations of the equations (3.6) we should recall some facts concerning submanifolds of Rie-
mannian spaces

∂τ j
k

∂ui
+ Γj

pqτ
q
kτp

i = Γ̂q
ikτ j

q + biknj(3.7)

∂nj

∂ui
+ Γj

pqn
qτp

i = −bq
i τ

j
q(3.8)

Here bik and bq
i are components of tensor of second quadratic form and Γ̂q

ik are components of metric connection on S
defined by the metric ĝik = gpqτ

p
i τq

k induced from M to the hypersurface S. The equations (3.7) and (3.8) are known
as Gauss and Weingarten formulae (see [6] and [7]). Comparing (3.6) with (3.8) we get

(3.9) ∇tτ
j
i

∣

∣

t=0
=

∂v

∂ui
nj
∣

∣

t=0
− vbq

i τ
j
q

∣

∣

t=0

Now we substitute the above obtained formula ∇tN
j = v−1P j

q F q and (3.9) into (3.5). Then from (3.3) we obtain the

following equation for still unknown function v = v(u1, . . . , un−1)

(3.10)
∂v

∂ui
= −v−1gjkF jτk

i
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Components F j of the force field in (3.10) depend on the velocity vector therefore they contain the dependence on the
unknown function v in the form of vp = v(u1, . . . , un−1)np(u1, . . . , un−1).

The equations (3.10) form the overdetermined system of differential equations. For to have common solution v they
should satisfy the compatibility conditions. We obtain these conditions when consider the following derivatives

(3.11)
∂2v

∂ui∂uj
=

∂

∂ui

(

−v−1gpqF
pτq

j

)

calculated according to the equations (3.10). To make shorter all further calculations we define covariant derivatives
Di as covariant derivatives with respect to ui given by the formula (3.18) from [5]. These covariant derivatives are
applicable to the tensor-valued functions whose domain of definition is S. For the tensor fields of M restricted to the
hypersurface S these covariant derivatives are calculated as Di = τk

i ∇k. Note that Di are not applicable to tensor
fields of expanded algebra unless some lifting of S from M to tangent bundle TM is defined. For the force field F in
(3.10) and (3.11) such lifting is given by the second part of initial conditions in (1.2). Therefore

(3.12) DiF
p = τk

i ∇kF p + (nkDiv + vDin
k)∇̃kF p

The results of applying Di to vector fields τ j
k and nj are defined by Gauss and Weingarten formulae (3.7) and (3.8)

(3.13) Diτ
j
k = Γ̂q

ikτ j
q + biknj Din

j = −bq
i τ

j
q

So the derivatives Di establish the link between inner geometry of S and the geometry of outer space M itself.
The derivatives Div for the scalar function v on S are given by the equations (3.10) the compatibility condition for

which we are going to derive now. Let’s combine (3.12) and (3.13)

(3.14)

∂2v

∂ui∂uj
= −v−3Fpτ

p
i Fqτ

q
j − v−1∇pFqτ

p
i τq

j +

+ v−2Fpτ
p
i ∇̃rFqn

rτq
j + ∇̃pFqb

r
i τ

p
r τq

j − v−1Γk
ijτ

q
kFq − v−1bijn

qFq

After exchanging indices i and j in (3.14) we obtain another expression for the same derivative in left hand side of
(3.14). The difference of these two expressions should be zero. This gives us the compatibility condition for (3.10) in
the following form

(3.15)
τk
i τq

j

(

∇qFk −∇kFq

v
+ N r ∇̃rFqFk − ∇̃rFkFq

v2

)

+

+ br
i τ

k
r τq

j ∇̃kFq − br
jτ

k
r τq

i ∇̃kFq = 0

In order to simplify the equations (3.15) we need to recall the following relationships due to (3.4)

(3.16) (gkrτ
r
i ĝij)τq

j = P q
k

By means of contracting (3.15) with the quantities enclosed in brackets in (3.16) we obtain

(3.17)
P k

i P q
j

(

∇qFk −∇kFq

v
+ N r ∇̃rFqFk − ∇̃rFkFq

v2

)

+

+ Hk
i P q

j ∇̃kFq − Hk
j P q

i ∇̃kFq = 0

where Hk
i are the components of the symmetric operator H determined by the second quadratic form of hypersurface

S

(3.18) Hk
i = girτ

r
q ĝqjbp

jτ
k
p

Symmetric operator H with the matrix (3.18) satisfies the following relationships

(3.19) HP = PH = H rank(H) ≤ n − 1
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Lemma 1. For any point P in M and any operator H in tangent space to M at this point satisfying the properties

(3.19) one can find the hypersurface S passing trough the point P such that the matrix of the operator H is given by

formula (3.18) at this point.

Proof of this lemma technical. We omit it noting only that one can choose S in the class of quadrics for some local
coordinates x1, . . . , xn in the neighborhood of P .

Lemma 1 shows that the matrix of the operator H in (3.17) is rather unrestricted. This let us replace (3.17) by
two separate equations of the following form

(3.20)
P k

i P q
j

(

∇qFk −∇kFq + N r ∇̃rFqFk − ∇̃rFkFq

v

)

= 0

Hk
i P q

j ∇̃kFq − Hk
j P q

i ∇̃kFq = 0

Now consider the operator K with the matrix Kj
i = P k

i ∇̃kFqP
q
r grj. Its properties are similar to (3.19) i.e.

(3.21) KP = PK = K rank(K) ≤ n − 1

Second equation (3.20) then means that the product KH is symmetric operator. Because of lemma 1 the operator H

is arbitrary symmetric operator. Taking H = P and using (3.21) we get that K is also the symmetric operator. The
product of two symmetric operators KH is symmetric if and only if they are commutating. Thus we have KH = HK

for arbitrary symmetric operator H satisfying the relationships (3.19). This is possible only if K is proportional to P

with some scalar factor K = λP. Scalar factor λ is easily calculated as λ = tr(K)/ tr(P). Now we can write

(3.22)

P k
i P q

j

(

N r ∇̃rFk

v
Fq −∇qFk

)

= P k
i P q

j

(

N r ∇̃rFq

v
Fk −∇kFq

)

P k
i ∇̃kF qP j

q =
P k

r ∇̃kF qP r
q

n − 1
P j

i

excluding the matrix H from (3.20) at all. The equations (3.22) just above combined with (3.2) form the complete
normality conditions which are sufficient for the definitions 2 and 3 to be fulfilled for the dynamical system (2.2).
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