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Separation of plastic deformations in polymers
based on elements of general nonlinear theory
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We report a method for describing plasticity in a broad classof amorphous materials. The method is based on
nonlinear (geometric) deformation theory allowing the separation of the plastic deformation from the general
deformation tensor. This separation allows an adequate pattern of thermodynamical phenomena for plastic
deformations in polymers to be constructed. A parameter,θ describing the stress relaxation rate of the material
is introduced within the frame of this approach. Additionally, several experimental configurations to measure
this parameter are discussed.
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Plastic and elastic deformation plays a critical role in the
description of physical phenomena in Earthis crustal defor-
mations [1], transfer of slurry, powdery and granular materi-
als through pipelines [2], and, especially, in polymer dynam-
ics [3]. Although the theory of elastic deformation including
elastic equilibrium, deflection and torsion of rods, bending of
plates and shells is a classical and well developed field, a com-
pleted theory applied to plastic media is yet to be developed.

The theories describing microscopic plastic deformations
in metals is based on a born-death dislocation mechanism pro-
ducing a shift of crystallographic grid. This have been devel-
oped by E. Orowan, M. Polanyi, G. I. Taylor, J. M. Burg-
ers, F. C. Frank, W. T. Read, R. E. Pierels, P. B. Hirsch,
W. C. Dash, Yu. A. Osipyan et al ([4]). In solids, the shear
transformation zone theory (STZ) has been developed by Falk
and Langer [5, 6]. However, a complete theory of plastic
deformation in polymer materials has not developed so far.
Physical behavior of polymers at the nanoscale is important
from the fundamental point of view to understand deforma-
tion processes, evolution of homogeneous or heterogeneous
nanostructures, and the thermal history of monomer architec-
ture [7, 8]. Understanding the deformation behavior in poly-
mers would eventiually produce novel nanostructure forma-
tion techniques based on nano-deformations.

Polymers are probably most suitable materials in which
plastic deformation can be studied experimentally. Recently,
Lyuksyutov and Vaia with co-authors reported nanopattering
technique based on localized Joule heating of a thin polymer
films [9, 10]. A biased atomic force microscope (AFM) tip
produces an electric current flow through the polymer film
resulting in localized Joule heating of the polymer above
its glass transition temperature due to electronic breakdown
through the film. Polarization and electrostatic attraction of
softened polymer toward the AFM tip in the presence of a
strong (109-1010 Vm−1) non-uniform electric field produce
raised or depressed nanostructures (10-50 nm width, and 0.1-
100 nm height) in a broad class of polymers of different

physical-chemical properties. This technique, named AFM-
based electrostatic nanolithography (AFMEN), can be applied
to the study of plastic deformations since both a liquid and a
plastic solid polymer phases coexist during the process. The
breakdown during AFMEN is a critical factor causing film
softening, and polymer mass transfer as a result. Recent ex-
perimental data indeed produce the evidence of nanostructure
formation in polymer that cannot be explained by the elec-
tronic breakdown. The most likely reason for polymer nanos-
tructure formation when an AFM tip of 20-50 nm in diameter
moves above the surface is the plastic deformation of polymer
molecules through triboelectrification mechanism. No elec-
tronic breakdown is required to deform the polymer surface in
this case. An exact analytical solution, based on the method
of images, has been obtained for the description of the elec-
tric field between an atomic force microscope (AFM) tip and
a thin dielectric polymer film (30 nm thick) spin-coated on a
conductive substrate. Three different tip shapes are foundto
produce electrostatic pressure above the plasticity threshold
in the polymers up to 50 MPa [11]. Should such a technique,
based on plastic deformations in polymer materials, be devel-
oped further, it would create an alternative to existing nanopat-
tering techniques effective tool, for patterning on nanoscale.
There has been a lot of activity in in last few years in devel-
oping these techniques including: 1) direct resist lithography
developed by Schaeffer et al [12] based on the competition of
Van der Waal’s and Laplace forces on polymer-air interface in
strong electric field; and 2) hierarchic nanostructure formation
based on electrodynamic instability in bilayer polymer films
developed by Russell et al [13]. The only industrial proto-
type for nanostructure formation in polymers called MILLI-
PEDE developed by Vettinger et al [14] is based on thermal-
mechanical lithography developed by Mamin and Rugar year-
lier in the 90s. [15]. The authors of the MILLIPEDE project
predict a replacement of ferromagnetic memories with based
on polymers in the next 20 years.

Experimental verification of the existence of plastic defor-
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mation on nanoscale in AFM-tip-polymer-metal system [11]
requires a theoretical model to describe them explicitly. An
important question is how to describe a polymer surface un-
dergoing deformations near the glass transition point when
two phases exist. There are two approaches for describ-
ing polymers in the liquid-solid phase deformed under ex-
ternal forces. The first, would be based on intensive math-
ematical description of this process through solution of the
Navier-Stokes equation for a steady flow of non-Newtonian
incompressible liquid with non-slip boundary conditions [16].
Although this approach may be ultimately correct, it lacks
generality for the description of polymer deformation at the
nanoscale. The second approach would be based on time-
dependent geometry of elastic and plastic deformations using
the elements of differential geometry and tensor analysis.In
this paper we consider this approach.

The goal of this letter is the separation of plastic deforma-
tions within a general nonlinear deformation tensor. A general
method for the separation would be to build into a framework
of balance equations traditionally used in the descriptionof
dynamics and thermodynamics of moving continuous media.
The model we present, would be useful for the description of
solid-liquid substances including organic molecules likeDNA
and long polymer molecules.

The technique is based on the tensor calculus associated
with curvilinear coordinates system. The basic concept for
moving continuous media description is presented through the
deformation map. The map transforms the point(ỹ1, ỹ2, ỹ3)
of the non-deformed medium to its current actual position
(y1, y2, y3). Direct and inverse deformation maps can be pre-
sented through the following sets of functions:











y1 = y1(ỹ1, ỹ2, ỹ3),

y2 = y2(ỹ1, ỹ2, ỹ3),

y3 = y3(ỹ1, ỹ2, ỹ3),











ỹ1 = ỹ1(y1, y2, y3),

ỹ2 = ỹ2(y1, y2, y3),

ỹ3 = ỹ3(y1, y2, y3),

(1)

The direct and inverse transformations of the deformation map
are presented in Figure 1 1. The partial derivatives of the map-

FIG. 1: Schematic presentation of the direct and inverse transforma-
tions on the deformation map. A point is transformed

ping functions (1) define two Jacobi matricesS̃i
j = ∂yi/∂ỹj

andT̃ i
j = ∂ỹi/∂ỹj. The non-linear deformation tensor can be

defined using one of them as pesented below:

Gij =

3
∑

r=1

3
∑

s=1

grs(ỹ
1, ỹ2, ỹ3) T̃ r

i T̃ s
j , (2)

wheregrs is the metric tensor arising through the useage of
curvilinear coordinates [17, 18]. In Cartesian coordinatesgrs

is presented by the unit matrix;̃T r
i , and T̃ s

j are two Jacobi
marices.

The tensor (2) is a quantitative measure of the deformation
at given point of curvilinear coordinate system. Should a con-
tinuous medium be represented as a collection of infinetise-
mal cubes, then the tensorGij completely describes how the
edges and angles of these cubes contract, elongate and distort
(as presented in Figure 1). Differentiating the formula (2)we
arrive at the following evolution differential equation for the
tensorGij :

∂Gij

∂t
+

3
∑

r=1

vr ∇rGij =

−

3
∑

r=1

∇iv
r Grj −

3
∑

r=1

Gir ∇jv
r.

(3)

In order to describe plastic media, we separate the general
deformation tensor into two tensors:̂G, andǦ are two parts
of plastic deformation tensor of;̂Gkq is the tensor of elastic
deformation:

Gij =

3
∑

k=1

3
∑

q=1

Ǧ k
i Ĝkq Ǧ q

j . (4)

The choice of representing the plastic deformation tensor in
two parts (instead of one as for elastic tensor) is related tothe
symmetry of the general tensor. The separation is the major
step for the following consideration. The plastic deformation
occurs in plastic materials that include pitch-like dense sticky
liquids, solid amorphous materials, e. g. glasses, and poly-
mers. These materials resist to the plastic deformation like
solids and can flow like liquids. Unlike metals, where plastic
deformation produces dislocations resulting in disorder of the
crystalline grid, in our consideration, the plastic deformation
does not change the material stucture.

The separation produces separate evolution equations for its
plastic and elastic parts. The evolution equation of the plastic
deformationǦ can be presented as:

∂Ǧ k
i

∂t
+

3
∑

r=1

vr ∇rǦ
k
i =

3
∑

r=1

Ǧ r
i ∇rv

k

−
3

∑

r=1

∇iv
r Ǧ k

r −
3

∑

r=1

θ k
r Ǧ r

i .

(5)

Here, as in equation (3)vr is the velocity of medium;∇ is the
spatial derivative;θ is the physical parameter of continuous



3

medium associated with the relaxation rate of elastic defor-
mation into plastic.

Although the tensorθ k
r is not symmetric, it can be obtained

from the symmetric tensorθij through the standard procedure
of index raising. Using equations (3), (4), (5) we derive the
evolution equation of elastic deformation. The evolution of
elastic deformation is an important factor in determining the
stress of a medium.

∂Ĝkq

∂t
+

3
∑

r=1

vr ∇rĜkq = −

3
∑

r=1

∇kvr Ĝrq

−

3
∑

r=1

Ĝkr ∇qv
r +

3
∑

r=1

θ r
k Ĝrq +

3
∑

r=1

Ĝkr θ r
q .

(6)

Equations (5) and (6) must be complemented by three bal-
ance equations (three conservation laws for the flows of mass,
momentum , and energy). The first is the mass balance equa-
tion:

∂ρ

∂t
+

3
∑

k=1

∇k( ρ vk) = 0. (7)

whereρ is the density;vk is the velocity tensor. The next
two equations are the momentum, and the energy balance
equations:

∂( ρ vi)

∂t
+

3
∑

k=1

∇kΠik = f i, (8)

∂

∂t

(

ρ |v|2

2
+ ρ ε

)

+

3
∑

k=1

∇kwk = e. (9)

Here f i is the density of external forces acting on the
medium,e is the power of the forces;v1, v2, v3 are the com-
ponents of velocity vectorv; ε is the specific inner thermal
energy;Πik andwk are the momentum, and energy flows de-
termined by the following formulae:

Πik = ρ vi vk − σik −

3
∑

j=1

3
∑

q=1

ηikjq vjq ,

wk =
ρ |v|2

2
vk + ρ ε vk −

3
∑

i=1

vi σik

−

3
∑

i=1

3
∑

j=1

3
∑

q=1

vi ηikjq vjq −

3
∑

i=1

∇iT κ
ik,

whereσik is the stress tensor;ηikjq is the viscosity tensor;
κ

ik is the heat conductivity tensor andvjq is the tensor of
velocity gradients:

vij =
∇ivj + ∇jvi

2
.

The parameterθ has the units of inverse time:(sec−1), and
determines the stress relaxation rate. The external forcespro-
duce stress and elastic deformation as a responce to this stress.
In solely elastic material the responce is constant for constant
deformation, and the parameterθ is zero. In plastic materials
θ is non-zero and the exponential reduction of elastic response
is observed. For constant general deformationG, the elastic
componentĜ in (4) decreases, while the plastic partǦ in-
creases. This scenario is presented in Figure 2.

FIG. 2: Conceptual presentation of parameterθ. Elastic deformation
produces stress relaxation resulting in plastic deformation through
the conservation laws.

Further analysis of this model indicates that for materials
in which the plastic deformation does not change the struc-
ture and produces no stress, it can excluded from consider-
ation. This can be formulated through the ”‘forgetting prin-
ciple”’. Suppose the medium evolves from an initial state at
time t = 0, to the intermediate state, att = t0, and then
continues evolution fort > t0. The principle asserts that if
the intermediate state total deformation of medium was solely
plastic, then the medium evolution occurs without memory of
the intermediate state.

Equations (5)-(9) form a complete set describing the evolu-
tion of plastic medium in the frames of this model. They are
used to describe the thermodynamics of plastic deformations.
The specific internal thermal energy of the material depends
on the entropy and on the elastic deformation. The differential
of the energy can be written as:

dε = T ds −

3
∑

i=1

3
∑

j=1

σ̄ij dĜij

2 ρ
(10)

Here,σ̄ij is an auxiliary tensor related to the stress tensor
through the following formula:

σij =

3
∑

r=1

Ĝ i
r σ̄rj . (11)

Using equations (10), and (11) the time derivative ofε and
its gradient can be found. Substituting them into equation (9)
and using the equations (5)-(8), we obtain the equation for
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specific entropy [17]:

∂( ρ s)

∂t
+

3
∑

k=1

∇k

(

ρ s vk −
3

∑

i=1

∇iT κ
ik

T

)

=
3

∑

i=1

3
∑

j=1

σij θij

T
+

3
∑

i=1

3
∑

k=1

∇iT κ
ik ∇kT

T 2

+

3
∑

i=1

3
∑

k=1

3
∑

j=1

3
∑

q=1

vik ηikjq vjq

T

(12)

The three terms in the right hand side of equation (12)
describe three different mechanisms of entropy production:
plasticity, heat transfer, and viscosity. Second and thirdterms
of (12) are typical for the visco-elastic solids. The term

3
∑

i=1

3
∑

j=1

σij θij

T
(13)

responsible for plasticity is new one. It is non-zero indicat-
ing the growth of entropy on the way to equilibrium. Elas-
tic deformation produces stress leading to plastic deforma-
tion, which in turn, results in additional entropy production
as shown in (12).

Once introduced, the material parameterθ should be mea-
sured experimentally. The parameter can be found using
calorimetric measuremens, as can be seen from the tempera-
ture dependence of the term (13). Alternatively, this parameter
can be measured through the static bending of a polymer, or
dynamic flow of the material. These two possible approaches
for θ measurements are presented in Figure 3 below.

In summary, we have suggested an approach for the sep-
aration of plastic deformation within general nonlinear ten-
sor deformation. This separation allows for a robust descrip-
tion of the material’s plasticity using the relaxation ratein-
troduced through the parameterθ. This approach can be also
used to describe experimental data of polymer deformation on
nanoscale.

The authors acknowledge the support from National Re-
search Council grant through the COBASE program. The au-
thors wish to thank R. R. Mallik for the useful comments.
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