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ALGORITHM FOR GENERATING ORTHOGONAL

MATRICES WITH RATIONAL ELEMENTS.

Ruslan A. Sharipov

Abstract. Special orthogonal n×n matrices with rational elements form the group
SO(n, Q), where Q is the field of rational numbers. Theorem describing the structure
of arbitrary matrix from this group is proved. This theorem yields an algorithm for
generating such matrices by means of random number routines.

1. Introduction.

Orthogonal matrices from the group O(n, R) describe rotations (or possibly ro-
tations with reflections) in n-dimensional Euclidean space Rn. Pure rotations cor-
respond to another classical group SO(n, R), which is subgroup in O(n, R). The
following matrix represent elementary rotation in p-q coordinate plane

p

O[pq](ϕ) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . α . . . −β . . . 0
...

...
. . .

...
...

0 . . . β . . . α . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.1)

q

Here α = cos(ϕ), β = sin(ϕ), and ϕ is an angle of rotation. Matrices of the form
(1.1) can be treated as elements of SO(2, R) embedded into SO(n, R). Matrix

Ω =

∥

∥

∥

∥

∥

∥

∥

∥

∥

O∗

0
...
0

0 . . . 0 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

(1.2)

with O∗ ∈ SO(n−1, R) then is an element of SO(n−1, R) embedded into SO(n, R).
For orthogonal matrices over the field of reals there is the following theorem.
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Theorem 1.1. Each orthogonal matrix O ∈ SO(n, R) can be represented as a

product O = O[1
2
](ϕ1) · . . . ·O[n−1

n ](ϕn−1) ·Ω, where first n− 1 terms are matrices of

elementary rotations (1.1), and Ω is an orthogonal matrix of the form (1.2).

Angles ϕ1, . . . , ϕn−1 in theorem 1.1 are known as Euler angles (see Chapter VII
in [1] for three dimensional case). These angles are restricted by inequalities

0 6 ϕ1 6 2π, 0 6 ϕi 6 π for i = 2, . . . , n − 1.

Applying theorem 1.1 recursively to O, then to O∗ in (1.2), and so on, we easily
prove the following theorem.

Theorem 1.2. Each orthogonal matrix O ∈ SO(n, R) can be represented as a

product of n(n − 1)/2 matrices of elementary rotations (1.1).

Theorem 1.1 is not valid for orthogonal matrices over the field of rational numbers.
As for theorem 1.2, I don’t know if it is valid or not for O ∈ SO(n, Q). However,
there is an algorithm for constructing orthogonal matrices over the field of rational
numbers. This algorithm is exhausting, this means that each orthogonal matrix
O ∈ SO(n, Q) could be obtained by applying this algorithm.

2. Stereographic projection.

Let S be unit sphere in Rn. We take the point S with coordinates (0, . . . , 0,−1)
as south pole on this sphere. Then equatorial hyperplane α is given by the equa-
tion xn = 0, where xn is n-th coordinate of a point of Rn (we use upper indices

for coordinates of vectors and points ac-
cording to Einstein’s tensorial notation,
which is popular in differential geometry
and in general relativity). Let’s consider
a ray [SX〉 starting at south pole S and
passing through a point X ∈ S. This
ray crosses equatorial hyperplane at some
point Y (as shown on figure 2.1 for three
dimensional case). For each X point Y
is unique. If we denote by S

◦ the unit
sphere S with pinned off south pole S,
then we get a map f : S

◦ → α that maps
S

◦ onto equatorial hyperplane α. This
map is called stereographic projection. It
is bijective and smooth. It’s very impor-

tant for us that stereographic projection is given by rational functions. Indeed, if
x1, . . . , xn are coordinates of the point X ∈ S

◦ and if y1, . . . , yn−1 coordinates
of the point Y = f(X), then for y1, . . . , yn−1, we get

ys =
xs

1 + xn
for s = 1, . . . , n − 1. (2.1)

Inverse map f−1 : Y → X is also given by rational functions. Indeed, we have

xn =

(

1 −

n−1
∑

i=1

(yi)2

)/(

1 +

n−1
∑

i=1

(yi)2

)

. (2.2)
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For other coordinates of the point X from (2.1) and (2.2) we derive

xs =
2 ys

(

1 +

n−1
∑

i=1

(yi)2

) , where s = 1, . . . , n − 1. (2.3)

Rationality of the expressions (2.1), (2.2), and (2.3) mean that rational points of
pinned sphere S

◦ are in one-to-one correspondence with rational points of equato-
rial hyperplane α. As for south pole S, it is usually associated with infinite point
Y = ∞ on α. Indeed, passing to the limit Y → ∞ in formulas (2.2) and (2.3), one
can get coordinates of the point S.

3. Orthogonal matrices and ONB’s.

Let O ∈ SO(n, Q) be some orthogonal matrix. Its columns can be treated as
vectors in Qn. Let’s denote them e1, . . . , en. Orthogonality of O means that
transposed matrix OT coincides with inverse matrix O−1:

O · OT = 1. (3.1)

Written in explicit form the equality (3.1) means that e1, . . . , en are vectors of
unit length perpendicular to each other. They form so called ONB (orthonormal
base) in Qn with respect to standard scalar product

(X, Y) =
n
∑

i=1

xi yi.

Matrices from special orthogonal group SO(n, Q) obey additional restriction

detQ = 1. (3.2)

For base vectors (3.2) means that e1, . . . , en form right oriented ONB (or, simply
saying, right ONB). In three dimensional space Q3 this property can be visualized.

Orientation rule. Vectors e1, e2, e3 form right triple in Q3 if when looking from
the end point of third vector e3 the shortest rotation from first vector e1 to second
vector e2 is seen as counterclockwise rotation.

In physics (electricity and magnetism) this rule is formulated as the rule of right
screw and also left hand rule (see [2] and [3]). In multidimensional spaces n > 3 one
cannot visualize the concept of left and right since human has not visual experience
of living in such spaces. However, one can understand it mathematically by means
of theory of determinants and skew-symmetric polylinear forms. Indeed, one should
first prescribe right orientation to standard base in Qn composed by vectors

E1 =

∥

∥

∥

∥

∥

∥

∥

∥

1
0
...
0

∥

∥

∥

∥

∥

∥

∥

∥

, E2 =

∥

∥

∥

∥

∥

∥

∥

∥

0
1
...
0

∥

∥

∥

∥

∥

∥

∥

∥

, . . . , En =

∥

∥

∥

∥

∥

∥

∥

∥

0
0
...
1

∥

∥

∥

∥

∥

∥

∥

∥

, (3.3)
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then one should consider transition matrix S for transition from standard base (3.3)
to another base e1, . . . , en. Its components are defined by the equality

ei =
n
∑

j=1

Sj
i ·Ej , i = 1, . . . , n. (3.4)

Definition 3.1. Base e1, . . . , en in Qn is called right oriented if detS > 0. Oth-
erwise, if detS < 0 this base is called left oriented.

Other method of defining orientation in Qn uses skew-symmetric polylinear
forms. Remember, that polylinear n-form in Qn is a Q-numeric function with
n vectorial arguments ω = ω(X1, . . . ,Xn) which is linear with respect to each its
argument. Form ω is called completely skew-symmetric if its value change the sign
upon permutation of any pair of arguments in it. It is known that completely skew-
symmetric n-form in Qn is determined uniquely up to a scalar factor. Therefore
there is exactly one n-form ω normalized by the condition ω(E1, . . . ,En) = 1. It
is called the form of volume. For the base e1, . . . , en we have the equality

ω(e1, . . . , en) = detS · ω(E1, . . . ,En),

where S is determined by (3.4). This means that the value of volume form ω can
be used as a measure of orientation for the bases in Qn.

Note that if base e1, . . . , en is composed by columns of orthogonal matrix O,
then transition matrix S in (3.4) coincides with O. This means that constructing
orthogonal matrix O ∈ SO(n, Q) is equivalent to choosing some right oriented ONB
in Qn. One vector in this base (say last vector en) can be constructed by means
of stereographic projection as described in section 2 above. This is the first step in
our algorithm for constructing orthogonal matrices. Then we should complement
it with other n − 1 vectors which should be unit vectors by length, perpendicular
to each other and perpendicular to en as well. Below we use Cayley transformation
for this purpose.

4. Cayley transformation.

Let A be skew-symmetric n×n square matrix. It is known that all eigenvalues of
skew-symmetric matrix are purely imaginary numbers (some o them can be equal to
zero, but they cannot be nonzero real numbers). Therefore det(1 − A) is nonzero.
Let’s consider the matrix O = (1 + A) · (1 − A)−1. Matrices 1 + A and 1 − A
commutate with each other, therefore (1+A) · (1−A)−1 = (1−A)−1 · (1+A). For
this reason we denote O = (1 + A) · (1 − A)−1 by means of fraction

O =
1 + A

1 − A
. (4.1)

Formula (4.1) is known as Cayley transformation (see book [4]). If A is skew-
symmetric, as it is in our case, then O is orthogonal matrix with detO = 1. Cayley
transformation defines a map so(n, Q) → SO(n, Q) similar to exponential map
exp: so(n, R) → SO(n, R). But, in contrast to exponential map, it is rational, that
is worth for our purposes. Cayley transformation is injective map. Indeed, if matrix
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O is obtained by formula (4.1), then one can recover matrix A by formula

A =
O − 1

O + 1
. (4.2)

However, one cannot apply formula (4.2) to arbitrary matrix O ∈ SO(n, Q). Ma-
trices with eigenvalue λ = −1 are not suitable. This means that Cayley transfor-
mation is not surjective. Below we modify Cayley transformation and convert into
algorithm able to yield each matrix O ∈ SO(n, Q).

Let’s choose special skew-symmetric matrix. Taking n − 1 rational numbers
y1, . . . , yn−1, we denote by A[y1, . . . , yn−1] skew–symmetric matrix of the form

A[y1, . . . , yn−1] =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 . . . 0 y1

...
. . .

...
...

0 . . . 0 yn−1

−y1 . . . −yn−1 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(4.3)

Substituting (4.3) into (4.1), we obtain orthogonal matrix

O[y1, . . . , yn−1] =
1 + A[y1, . . . , yn−1]

1 − A[y1, . . . , yn−1]
. (4.4)

By direct calculation one can find that n-th column in matrix (4.4) coincides with
unit vector en constructed by means of stereographic projection in section 2. It’s
components are given by formulas (2.2) and (2.3). Let’s denote by e1, . . . , en−1

other n− 1 columns of matrix O[y1, . . . , yn−1]. Completed by vector en, they form
ONB in Qn. Here are formulas for components of vector ek, where k 6= n:

xs =
−2 yk ys

(

1 +

n−1
∑

i=1

(yi)2

) for s 6= k, s 6= n,

xk = 1 −
2 (yk)2

(

1 +

n−1
∑

i=1

(yi)2

) , xn =
−2 yk

(

1 +

n−1
∑

i=1

(yi)2

) .

(4.5)

We can pass to the limit Y → ∞ in (2.2) and (2.3). However, we cannot pass to
this limit in (4.5). For infinite point Y = ∞ we set by definition

O[∞] =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 . . . 0 0 0
...

. . .
...

...
...

0 . . . 1 0 0

0 . . . 0 −1 0

0 . . . 0 0 −1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(4.6)
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Theorem 4.1. Each unit vector e ∈ Qn given by its stereographic coordinates

y1, . . . , yn−1 is canonically associated with some orthogonal matrix O ∈ SO(n, Q).

Formulas (2.2), (2.3), (4.5), and (4.6) give explicit proof of theorem 4.1. By con-
struction vector e is n-th column in matrix O = O[y1, . . . , yn−1].

Now let O be some arbitrary matrix from special orthogonal group SO(n, Q).
We denote by e its n-th column. This is unit vector with rational components
x1, . . . , xn. Suppose that y1, . . . , yn−1 are its stereographic coordinates (see for-
mula (2.1) in section 2). They are also rational numbers. Therefore we can construct
orthogonal matrix O[y1, . . . , yn−1] as described above. As a result we get two or-
thogonal matrices O and O[y1, . . . , yn−1] with the same n-th column in them. This
is possible if and only if these matrices are bound by the relationship

O = O[y1, . . . , yn−1] · Ω, (4.7)

where Ω is orthogonal matrix of the form (1.2). Thus we have proved a theorem.

Theorem 4.2. Each orthogonal matrix O ∈ SO(n, Q) can be represented as a

product (4.7), where Ω is a blockwise diagonal matrix determined by some element

of orthogonal group SO(n − 1, Q).

Theorem 4.2 is analog of theorem 1.1, while rational parameters y1, . . . , yn−1

are analogs of Euler angles ϕ1, . . . , ϕn−1. Applying this theorem recursively, for
O ∈ SO(n, Q) we get the equality

O = O[y1

1
, . . . , yn−1

1
] · O[y1

2
, . . . , yn−2

2
] · . . . · O[y1

n−1
]. (4.8)

Theorem 4.3. Each orthogonal matrix O ∈ SO(n, Q) can be constructed by means

of algorithm described above in form of product (4.8).

Theorem 4.3 is analog of theorem 1.2. Note that the number of rational param-
eters yi

j in (4.8) is equal to n(n − 1)/2. This is exactly the same number as in the
statement of theorem 1.2.

5. Concluding remarks.

I am not specialist in algebra and I am not specialist in number theory. I have
encountered problem of generating orthogonal matrices with rational elements in
designing computer programs for testing students (see [5]). Therefore it’s quite
possible that all above results are not new. However, I hope that gathered in one
paper and formulated as computational algorithm they could be useful for practical
purposes. In addition, I have collected some references (see [6–12]) related to the
subject of present paper.
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