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ORTHOGONAL MATRICES WITH RATIONAL COMPONENTS

IN COMPOSING TESTS FOR HIGH SCHOOL STUDENTS.

Ruslan A. Sharipov

Abstract. Fermat Last Theorem, which inspired mathematicians during 300 years,

is proved by Andrew Wiles. Even among mathematicians there is a narrow circle

of specialists, who can read this proof and understand all details. Is it a reason

for pessimism? No, since arithmetics if entire numbers contains broad variety of

problems with a simple statement, which might be not less intricate. One of them

arises in elementary geometry.

1. Elementary problem on pyramid.

Primary education (Elementary School) and secondary education (High School)
in Russia are united into one stage that now lasts 11 years (from 6 year old to 17
years old). Mathematics is among disciplines studied during these years. Below we
consider a problem, which can be suggested to 10-th or 11-th year students in the
course of geometry. It is typical, though is a little more complicated than usual.

Problem on pyramid. In triangular

pyramid ABCD three sides of triangle

ABC in its base are given:

|BC| = a, |CA| = b, |AB| = c.

From corners A and B two perpendiculars

are drown to the faces BCD and ACD
respectively. Their lengths are given:

|AF | = f, |BG| = g.

Find the length of the segment [FG] con-

necting feet of these two perpendiculars

[AF ] and [BG].

Let’s consider in brief the steps leading
to the solution of this problem. First we
draw all three heights in triangle ABC:

these are segments [AH ], [BK], [CM ]. It’s known that they cross at one point.
Denote it by L. For the sake of simplicity we consider the case when triangle
ABC is acute-angled. In this case point L lies inside the triangle ABC. Now let’s
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apply Pythagor’s theorem to rectangular triangles AMC and BMC. As a result
we obtain the system of equations with respect to the length of the segment [AM ]:

(1.1)

{

|AM |2 + |CM |2 = |AC|2,

(|AB| − |AM |)2 + |CM |2 = |BC|2.

Solving the system of equations (1.1), for lengths of [AM ] and [BM ] we get

(1.2)

|AM | =
|AB|2 + |AC|2 − |BC|2

2 |AB|
,

|BM | =
|AB|2 + |BC|2 − |AC|2

2 |AB|
.

Similar formulas can be obtained for |AK|, |KC|, |BH |, and |HC|:

|AK| =
|AC|2 + |AB|2 − |BC|2

2 |AC|
,

|CK| =
|AC|2 + |BC|2 − |AB|2

2 |AC|
,

|BH | =
|BC|2 + |AB|2 − |AC|2

2 |BC|
,

|CH | =
|BC|2 + |AC|2 − |AB|2

2 |BC|
.

Let’s replace |AB| − |AM | by |BM | in the second equation of the system (1.1).
Then we can derive the following formula for the length of segment [CM ]:

(1.3) |CM | =

√

|AC|2 + |BC|2 − |AM |2 − |BM |2

2
.

Similar formulas can be derived for the lengths of segments [AH ] and [BK]:

(1.4)

|AH | =

√

|AB|2 + |AC|2 − |CH |2 − |BH |2

2
,

|BK| =

√

|AB|2 + |BC|2 − |AK|2 − |CK|2

2
.

In order to calculate lengths of segments [KL] and [HL] we use similarity of trian-
gles: △KLC ∼ △MAC and △HLC ∼ △MBC. This yields:

|KL| =
|AM |

|CM |
|KC|, |HL| =

|BM |

|CM |
|HC|.(1.5)
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Now let’s draw segments [FH ] and [GK]. According to the theorem on three
perpendiculars, we have GK ⊥ AC and FH ⊥ BC. Then, since we already know
|AF | and |BG|, we can calculate lengths of segments [FH ] and [GK]:

|FH | =
√

|AC|2 − |CH |2 − |AF |2,

|GK| =
√

|BC|2 − |CK|2 − |BG|2.

In order to derive first of these two expressions we applied Pythagor’s theorem to
rectangular triangles AHC and AHF . Second expression is derived by Pythagor’s
theorem applied to triangles BKC and BKG.

Orthogonal projections of the points F and G onto the plane of the base of
pyramid belong to the straight lines AH and BK. Denote these projections by F̃
and G̃ respectively. For the sake of simplicity we consider the case when points
F and G are above the base of pyramid (i. e. in upper halfspace separated by the

plane ABC), and when their projections F̃ and G̃ belong to the segments [HL]
and [KL] respectively (see Fig. 1.2 and Fig. 1.3). Due to similarity of triangles

△GKG̃ ∼ △KBG and △HFF̃ ∼ △FAH we derive the following formulas:

|GG̃| =
|BG| |GK|

|BK|
, |FF̃ | =

|AF | |FH |

|AH |
,(1.6)

|KG̃| =
|GK|2

|BK|
, |HF̃ | =

|FH |2

|AH |
.(1.7)

The length of the segment [G̃F̃ ] (see Fig. 1.4 below) is determined by cosine theorem

applied to the triangle G̃LF̃ :

(1.8) |G̃F̃ | =

√

|LG̃|2 + |LF̃ |2 − 2 |LG̃| |LF̃ | cos(K̂LH)

Note that angles ∠KLH and ∠KCH complete each other to a straight angle.
Indeed, triangle LKC is rectangular (see Fig. 1.4 below). Same is true for triangle
LHC. Hence for the angles of these two triangles we can write the equalities:

K̂LC + K̂CL = 90◦,

ĤLC + ĤCL = 90◦.
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Adding these equalities and taking into account that K̂LC + ĤLC = K̂LH and

K̂CL + ĤCL = K̂CH, we get the required equality K̂LH + K̂CH = 180◦. As an

immediate consequence of this equality we can write the equality for cosines:

cos(K̂LH) = − cos(K̂CH).

Cosine of the angle K̂CH can be determined by applying cosine theorem to the
triangle ABC, which lies in the base of pyramid ABCD:

cos(K̂CH) =
|AC|2 + |BC|2 − |AB|2

2 |AC| |BC|
.

Lengths of segments [LF̃ ] and [LG̃] in formula (1.8) can be calculated as follows:

|LF̃ | = |LH | − |HF̃ |, |LG̃| = |LK| − |KG̃|.

This is obvious from Fig. 1.2 and Fig. 1.3. Now the length of segment [FG], which
was to be found, is calculated by Pythagor’s theorem (see Fig. 1.5):

|FG| =

√

|F̃ G̃|2 + (|GG̃| − |FF̃ |)2.

So problem on pyramid is solved. This is typical stereometric problem that
can be used to test the knowledge of some basic facts and spatial imagination of
students. Its solution considered just above is not tricky. But it is rather huge, and
we cannot write simple explicit formula expressing |FG| through parameters a, b,
c, f , and g. Therefore we should give numeric values for these parameters, choosing
them so that they provide simple numeric values for ultimate result and for results
of all intermediate calculations. Thus, another problem arises, problem of choosing
proper numeric values for a, b, c, f , and g. We shall consider this problem below.
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2. Orthogonal matrices.

Let’s apply the coordinate method to the problem on pyramid. Here we have two

natural triples of orthogonal vectors. First consists of vectors
−→
AF ,

−−→
FH ,

−−→
HC, second

is formed by vectors
−→
BG,

−−→
GK, and

−−→
KC. Let’s consider three unitary vectors e1,

e2, e3 directed along vectors
−→
AF ,

−−→
FH , and

−−→
HC. Then choose other three unitary

vectors directed along vectors
−→
BG,

−−→
GK, and

−−→
KC. Vectors e1, e2, e3 and h1, h2, h3

form two bases consisting of unitary vectors orthogonal to each other. Such bases
are called orthonormal bases (ONB). Let’s consider the following expansions
binding vectors of two ONB’s:

hi =

3
∑

i=1

Sk
i ek, ek =

3
∑

i=1

T j
k hj .(2.1)

Coefficients of the expansions (2.1) are usually arranged into square matrices, which
are called transition matrices:

S =

∥

∥

∥

∥

∥

∥

∥

S1

1
S1

2
S1

3

S2

1
S2

2
S2

3

S3

1
S3

2
S3

3

∥

∥

∥

∥

∥

∥

∥

, T =

∥

∥

∥

∥

∥

∥

∥

T 1

1
T 1

2
T 1

3

T 2

1
T 2

2
T 2

3

T 3

1
T 3

2
T 3

3

∥

∥

∥

∥

∥

∥

∥

.(2.2)

Matrices S and T in (2.2) implement direct and inverse transitions from base to
base, they are inverse to each other, i. e. their product is a unitary matrix:

S · T = T · S = E.

If we treat (2.1) as transition from the base e1, e2, e3 to the base h1, h2, h3, then S
is called direct transition matrix, while T is called inverse transition matrix.

Matrices S and T in our case are binding two ONB’s. Therefore components of
these matrices are bound by a series of relationships. If we denote by St and T t

transposed matrices, i. e. if we denote

St =

∥

∥

∥

∥

∥

∥

∥

S1

1
S2

1
S3

1

S1

2
S2

2
S3

2

S1

3
S2

3
S3

3

∥

∥

∥

∥

∥

∥

∥

, T t =

∥

∥

∥

∥

∥

∥

∥

T 1

1
T 2

1
T 3

1

T 1

2
T 2

2
T 3

2

T 1

3
T 2

3
T 3

3

∥

∥

∥

∥

∥

∥

∥

,

then these relationships for components of S and T can be written as follows:

St · S = E, T t · T = E.(2.3)

From (2.3) and from S · T = T · S = E we immediately derive St = T and T t = S.
Matrices that satisfy the relationships (2.3) are called orthogonal matrices.

Sum of squares of elements in each column and in each string of orthogonal matrix
is equal to 1. So we have the relationships

(2.4)

3
∑

i=1

(Si
k)2 =

3
∑

i=1

(Sk
i )2 = 1 for all k = 1, 2, 3.
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Sums of products of elements from different columns and/or different string are
equal to zero. This property is expressed by the relationships

(2.5)

3
∑

i=1

Si
k Si

q =

3
∑

i=1

Sk
i Sq

i = 0 for k 6= q.

The relationships (2.4) and (2.5) are easily derived from (2.3). Moreover, from (2.3)
one can derive the following relationships for determinants of S and T :

(detS)2 = 1, (detT )2 = 1.

Therefore detS = det T = ± 1. Looking attentively at Fig. 1, one can note that
−→
AF ,

−−→
FH,

−−→
HC and

−→
BG,

−−→
GK,

−−→
KC are oppositely oriented triples of vectors: first is

left, while second is right. Hence bases e1, e2, e3 and h1, h2, h3 are also oppositely
oriented. This fact is reflected by the sign of determinants of transition matrices:

(2.6) detS = detT = −1.

Further we shall be interested in the case when all components of matrices S
and T are rational numbers. Components of S belonging to the same column can
be brought to common denominator, and hence, they can be written as

S1

1
=

p1

d1

, S2

1
=

p2

d1

, S3

1
=

p3

d1

,

S1

2
=

q1

d2

, S2

2
=

q2

d2

, S3

2
=

q3

d2

,(2.7)

S1

3
=

r1

d3

, S2

3
=

r2

d3

, S3

3
=

r3

d3

.

From (2.4) for entire numbers p1, p2, p3, and d1 in (2.7) we derive the relationship

(2.8) (p1)
2 + (p2)

2 + (p3)
2 = (d1)

2.

If four entire numbers satisfy the relationship (2.8), we say that they form Pytha-

gorean tetrad. Each column in orthogonal matrix with rational components is
related with some Pythagorean tetrad of entire numbers. Thus, in (2.7) we have
three Pythagorean tetrads determined by transition matrix S:

(p1, p2, p3, d1), (q1, q2, q3, d2), (r1, r2, r3, d3).(2.9)

Pythagorean tetrads of entire numbers (2.9) are orthogonal to each other in the
sense of the following relationships:

p1 q1 + p2 q2 + p3 q3 = 0,

p1 r1 + p2 r2 + p3 r3 = 0,

r1 q1 + r2 q2 + r3 q3 = 0.
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In order to determine an orthogonal matrix it’s sufficient to have two orthog-
onal Pythagorean tetrads, for instance, (p1, p2, p3, d1) and (q1, q2, q3, d2). Third
Pythagorean tetrad then will be determined by the relationships

r1

d3

= −

∣

∣

∣

∣

p2 p3

q2 q3

∣

∣

∣

∣

d1 d2

,
r2

d3

=

∣

∣

∣

∣

p1 p3

q1 q3

∣

∣

∣

∣

d1 d2

,
r3

d3

= −

∣

∣

∣

∣

p1 p2

q1 q2

∣

∣

∣

∣

d1 d2

.

This is the consequence of the fact that third vector in orthonormal bases (ONB’s)
are determined by vector product of first two vectors:

e3 = −[e1, e2], h3 = [h1, h2].

The difference in sign here is due to the condition (2.6), which expresses difference
in orientations of bases e1, e2, e3 and h1, h2, h3.

Returning to the problem on pyramid, we use the fact that vectors
−→
AF ,

−−→
FH and

−−→
HC are collinear to base vectors e1, e2, e3:

−→
AF = α1 · e1,

−−→
FH = α2 · e2,

−−→
HC = α3 · e3.(2.10)

Similarly, vectors
−→
BG,

−−→
GK, and

−−→
KC are collinear to base vectors h1, h2, h3:

−→
BG = β1 · h1,

−−→
GK = β2 · h2,

−−→
KC = β3 · h3.(2.11)

Vector
−→
BC is collinear to vector e3, while vector

−→
AC is collinear to vector h3:

−→
BC = ω · e3,

−→
AC = σ · h3.(2.12)

Let’s choose parameters ω and σ in (2.12) to be rational numbers, and then let’s

apply the relationships (2.1). As a result for vector
−→
AC we obtain two expansions:

(2.13)

−→
AC =

−→
AF +

−−→
FH +

−−→
HC,

−→
AC = σ · (S1

3
e1 + S2

3
e2 + S3

3
e3).

Substituting (2.10) into (2.13) and comparing two expansions (2.13), we obtain

α1 = σ S1

3
, α2 = σ S2

3
, α3 = σ S3

3
.(2.14)

In a similar way, from (2.10) and (2.13) due to (2.1) and due to the expansion
−→
BC =

−→
BG +

−−→
GK +

−−→
KC we can derive the following three relationships:

β1 = ω T 1

3
, β2 = ω T 2

3
, β3 = ω T 3

3
.(2.15)

If components of transition matrix S are rational numbers, then components of
inverse transition matrix T = St are also rational. Therefore from (2.14) and
(2.15) we obtain rationality of numeric coefficients α2, α2, α3 and β1, β2, β3 in
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(2.10) and (2.11). This, in turn, provides rationality of lengths of segments [AC],
[BC], [AK], [CK], [BH ], [CH ], [BG], [GK], [AF ], and [FH ].

Let’s consider the vector
−→
FG, length of which is a final result in the problem on

pyramid. For this vector we have an expansion:

(2.16)
−→
FG =

−−→
FH +

−−→
HC −

−−→
KC −

−−→
GK.

Let’s substitute (2.10) and (2.11) into the expansion (2.16). This yields

−→
FG = α2 e2 + α3 e3 − β2 h2 − β3 h3 = α2 e2 + α3 e3 −

− β2 (S1

2
e1 + S2

2
e2 + S3

2
e3) − β3 (S1

3
e1 + S2

3
e2 + S3

3
e3).

Now it’s easy to see that vector
−→
FG has rational coordinates in orthonormal base

(ONB) formed by vectors e1, e2, e3. Therefore its length, in the worst case, is
simplest irrational number obtained as a square root of rational number. The
same is true for lengths of segments [AB], [AM ], [BM ], [CM ], [KL], [HL], [AH ],

[BK], as well as for the lengths of segments [FF̃ ], [HF̃ ], [GG̃], and [KG̃]. For |AB|

this follows from the equality
−→
AB =

−→
AC −

−→
BC. Further we use formulas (1.2),

(1.3), (1.5), (1.4); then formulas (1.6) and (1.7). Main conclusion that we draw
from what was said above is the following: orthogonal matrices with rational

components give the algorithm for choosing numeric values of parameters a, b, c,
f , g in the problem on pyramid such that we get simple final result in this problem
and simple results in all intermediate calculations.

3. Constructing orthogonal matrices

with rational components.

Constructing orthogonal matrices with rational components is a separate prob-
lem. First we consider regular algorithm for constructing such matrices. It is based
on elementary rotations. Let’s consider three entire numbers p1, p2, d, and suppose
that they are bound by the relationship

(3.1) (p1)
2 + (p2)

2 = d2.

Such numbers form Pythagorean triad. In contrast to Pythagorean tetrads they
are well-known. There is a regular algorithm for constructing all Pythagorean
triads (see, for instance, [1]). If τ is a greatest common divisor of p1, p2, and q,

then p1 = τ · p̃1, p2 = τ · p̃2, d = τ · d̃. From (3.1) we derive

(p̃1)
2 + (p̃2)

2 = d̃2.

If p̃1 is even and p̃2 is odd, then d̃ is odd. According to the regular algorithm
described in [1], in this case we have the following expressions:

p̃1 = 2 (m2 + m − n2 − n),

p̃2 = 4 m n + 2 m + 2 n + 1,

d̃ = 2 (m2 + m + n2 + n) + 1.



ORTHOGONAL MATRICES IN COMPOSING TESTS. 9

Here m and n are two arbitrary entire numbers. So Pythagorean triads are parame-
terized by three arbitrary entire numbers: m, n, and τ . Suppose that we have some
nonzero Pythagorean triad (p1, p2, d). Then we can consider two rational numbers
p1/d and p2/d, sum of their squares being equal to unity:

(p1

d

)2

+
(p2

d

)2

= 1.

Hence in half-open interval [0, 2π) there exists some angle ϕ such that

cosϕ =
p1

d
, sin ϕ =

p2

d
.(3.2)

Angle ϕ in (3.2) is uniquely determined by numbers p1, p2, and d forming Pythago-
rean triad (p1, p2, q). Let’s use this angle in order to define four matrices:

S [x]

ϕ =

∥

∥

∥

∥

∥

∥

∥

∥

cosϕ sin ϕ 0

− sinϕ cosϕ 0

0 0 1

∥

∥

∥

∥

∥

∥

∥

∥

, S [y]

ϕ =

∥

∥

∥

∥

∥

∥

∥

∥

cosϕ 0 sin ϕ

0 1 0

− sinϕ 0 cosϕ

∥

∥

∥

∥

∥

∥

∥

∥

,

(3.3)

S [z]

ϕ =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0

0 cosϕ sin ϕ

0 − sinϕ cosϕ

∥

∥

∥

∥

∥

∥

∥

∥

, S∗ =

∥

∥

∥

∥

∥

∥

∥

∥

−1 0 0

0 −1 0

0 0 −1

∥

∥

∥

∥

∥

∥

∥

∥

.

Matrices S [x]
ϕ , S [y]

ϕ , S [z]
ϕ are geometrically interpreted as matrices of elementary

rotations to the angle ϕ around coordinate axes. They arise as transition matrices
in (2.1) in that case when base h1, h2, h3 is got from base e1, e2, e3 by one of such
elementary rotations. Matrix S∗ in (3.3) is interpreted as a matrix of inversion. It
arises as transition matrix in (2.1) when

h1 = −e1, h2 = −e2, h3 = −e3.

All four matrices (3.3) are orthogonal. This can be checked by substituting
them into (2.3). If ϕ is determined by the relationships (3.2), then all components
of matrices (3.3) are rational. Product of two orthogonal matrices is an orthogonal
matrix (it’s well-known that such matrices form a group). Therefore, choosing n
Pythagorean triads and determining angles ϕ1, . . . , ϕn by relationships (3.2), we
can consider the following product of corresponding matrices (3.3):

(3.4) S = (S∗)ε ·

n
∏

i=1

(S [x]

ϕi
)αi · (S [y]

ϕi
)βi · (S [z]

ϕi
)γi .

Here ε, αi, βi, γi are entire numbers either equal to zero or to unity. Formula (3.4)
gives an algorithm for constructing orthogonal matrices with rational components
in dimension 3. We shall call it a regular algorithm.
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4. Some generalizations and open questions.

Leonard Euler considered a class of matrices, which is a little more wide than
class determined by the relationships (2.3). Euler’s class is formed by matrices S
with entire components that satisfy the following condition:

(4.1) St · S = N · E.

Here N is some positive entire number. Matrices of Euler’s class are called entire

orthogonal matrices, number N is called a norm of orthogonality. If N is a
square of entire number, i. e. if N = M2, then matrix M−1 · S is an orthogonal
matrix with rational components in the sense of standard definition by formulas
(2.3). Leonard Euler has suggested an algorithm for constructing entire orthogonal
matrices in the dimensions 3 and 4. His algorithm is described in book [2]. In papers
[3–5] Euler’s algorithm was generalized for n×n matrices in arbitrary dimension n.
Due to the existence of two algorithms we have a series of quite natural questions.

— How do Euler’s algorithm relate with regular algorithm, which is expressed by
above formula (3.4) ?

— Can we construct an arbitrary orthogonal matrix with rational components by
Euler’s algorithm?

— Is there the expansion (3.4) for an arbitrary orthogonal matrix with rational
components, i. e. can it be constructed by regular algorithm?

Answers to these questions are unknown to the author of this paper. Author will
be grateful for any information concerning subject of this paper.
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