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ON THE SUBSET OF NORMALITY EQUATIONS

describing generalized Legendre transformation.

R. A. Sharipov

Abstract. Normality equations describe Newtonian dynamical systems admitting
normal shift of hypersurfaces. They were first derived in Euclidean geometry, then
in Riemannian geometry. Recently they were rederived in more general case, when
geometry of manifold is given by generalized Legendre transformation. As appears,
in this case some part of normality equations describe generalized Legendre transfor-
mation itself irrespective to that Newtonian dynamical system, for which others are
written. In present paper this smaller part of normality equations is studied.

1. Newtonian dynamical systems

and generalized Legendre transformation.

Let M be smooth manifold of dimension n. We say that the motion of a point
p = p(t) of this manifold obeys Newton’s second low if in local chart it is described
by the following ordinary differential equations:

ẋi = vi, v̇i = Φi(x1, . . . , xn, v1, . . . , vn). (1.1)

Here v1, . . . , vn are components of velocity vector v of moving point. Its mass is
assumed to be equal to unity: m = 1. Therefore functions Φ1, . . . , Φn in (1.1)
play the role of force vector, though, unlike v1, . . . , vn, they are not components
of tangent vector to M .

Not always, but very often differential equations (1.1) are associated with some
extremal principle and hence are given implicitly by Euler-Lagrange equations:

ẋi = vi,
d

dt

(
∂L

∂vi

)

=
∂L

∂xi

In this case they can be transformed to Hamiltonian form

ẋi =
∂H

∂pi

, ṗi = −
∂H

∂xi

by means of classical Legendre transformation that relates velocity vector v and
momentum covector p according to the following formula:

pi =
∂L

∂vi
. (1.2)
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In [1] and [2] more general transformation was considered. It is given by functions







p1 = L1(x
1, . . . , xn, v1, . . . , vn),

. . . . . . . . . . . . . . . . . . . . . . .

pn = Ln(x1, . . . , xn, v1, . . . , vn).

(1.3)

From geometric point of view generalized Legendre transformation (1.3) is a smooth
fiber-preserving map from tangent bundle to cotangent bundle:

λ : TM → T ∗M. (1.4)

Fiber-preserving means that each fixed fiber of tangent bundle TM is mapped into
a fiber of T ∗M over the same base point of M . For the sake of simplicity we shall
assume generalized Legendre map (1.4) to be diffeomorphic. Then inverse map

λ−1 : T ∗M → TM (1.5)

is also fiber-preserving. In local chart it is given by functions






v1 = V 1(x1, . . . , xn, p1, . . . , pn),

. . . . . . . . . . . . . . . . . . . . . . .

vn = V n(x1, . . . , xn, p1, . . . , pn).

(1.6)

In paper [1] generalized Legendre maps (1.4) and (1.5) were used in order to
transform dynamical system (1.1) to p-representation. Here it looks like

ẋi = V i ṗi = Θi, (1.7)

where functions V 1, . . . , V n are given by (1.6), while Θ1, . . . , Θn are similar func-
tions playing the same role as function Φ1, . . . , Φn in (1.1). Then in paper [1]
shift of hypersurfaces along trajectories of dynamical system (1.7) was studied and
theory of Newtonian dynamical systems admitting normal shift of hy-

persurfaces was generalized to present non-metric geometry given by maps (1.4)
and (1.5). Previous stage of development of this theory is reflected in paper [3] and
in theses [4] and [5] (see also recent papers [6–13]).

Main result of theory constructed in paper [1] is a set of normality equations.
This is rather huge system of partial differential equations with respect to functions
V 1, . . . , V n and Θ1, . . . , Θn. In paper [2] normality equations were transformed
back to v-representation. Here they form a system of partial differential equa-
tions with respect to functions Φ1, . . . , Φn in (1.1) and functions L1, . . . , Ln in
(1.3). Total set of normality equations is divided into two parts: weak normal-

ity equations written for n > 2 and additional normality equations, which
are present only in multidimensional case n > 3. Additional normality equations
in turn are subdivided into three parts. It is remarkable that equations in the
first part have no entries of functions Φ1, . . . , Φn in them. They form a system
of partial differential equations with respect to functions L1, . . . , Ln that define
generalized Legendre transformation (1.4). Further we shall call them normality

equations for generalized Legendre transformation. Main goal of present pa-
per is to study these equations and describe generalized Legendre transformations
determined by their solutions.
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2. Normality equations

for generalized Legendre transformation.

Values of functions L1, . . . , Ln in (1.3) form components of covector p ∈ T ∗

p (M)
when their arguments are fixed. However, they do not form components of tradi-
tional covector field. They form so called extended covector field.

Definition 2.1. Extended tensor field X of type (r, s) in v-representation is a
tensor-valued function X = X(q) with argument q = (p,v) in tangent bundle TM
and with values in the following tensor space:

T r
s (p, M) =

r times
︷ ︸︸ ︷

Tp(M) ⊗ . . . ⊗ Tp(M)⊗T ∗

p (M) ⊗ . . . ⊗ T ∗

p (M)
︸ ︷︷ ︸

s times

.

Extended covector field is a special case of extended tensor field, when r = 0 and
s = 1. Now we shall not discuss theory of extended tensor fields, referring reader
to Chapters II, III, and IV of thesis [4]. However, we should note that if

X i1... ir

j1... js
= X i1... ir

j1... js
(x1, . . . , xn, v1, . . . , vn)

are components of extended tensor field X, then partial derivatives

∇̃kX i1... ir

j1... js
=

∂X i1... ir

j1... js

∂vk
(2.1)

are components of another extended tensor field ∇̃X. Therefore in (2.1) we use

symbol of covariant derivative ∇̃k for partial derivative ∂/∂vk.

Let’s apply covariant differentiation ∇̃ to extended covector field L with compo-
nents (1.3). As a result we get extended tensor field g of type (0, 2) with components

gqk = ∇̃kLq. (2.2)

Matrix gqk in (2.2) is non-degenerate since it coincides with Jacobi matrix for
diffeomorphic map (1.4). Hence we can consider inverse matrix with components
gqk. It defines extended tensor field of type (2, 0), we denote it by the same symbol
g. Though being non-symmetric, tensor field g with components (2.2) and its dual
field with components gqk here play the same role as metric tensor and dual metric
tensor in Riemannian geometry.

Now, according to paper [2], we define extended scalar field Ω and operator-
valued extended tensor field P. They are determined as follows:

Ω =

n∑

s=1

Ls Ls = |L|2, P i
j = δi

j −
Li Lj

|L|2
. (2.3)

Here Ls and Li are components of extended vector field L dual to covector field L

with components (1.3) with respect to non-symmetric metric (2.2):

Li =

n∑

s=1

Ls gsi. (2.4)
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Being more accurate, we should say that (2.4) are components of vector field right-
dual to covector field L. One can also define left-dual vector field with components

Ľi =

n∑

s=1

gis Ls. (2.5)

In (2.3) we denoted Ω = |L|2, it is positive if non-symmetric metric (2.2) is positive.
However, this is not obligatory. We shall only require that Ω 6= 0 since it is in
denominator in second formula (2.3).

Now we are ready to write normality equations for generalized Legendre trans-
formation (1.4). In local chart they are written as follows:

n∑

r=1

n∑

s=1

(Ars − Asr)P i
r P j

s = 0. (2.6)

Here Ars are components of extended tensor field A. According to paper [2], in
v-representation they are given by formula

Ars =
n∑

q=1

gqr ∇̃qL
s. (2.7)

Note that metric tensor g in (2.2), projector field P, and tensor field A in (2.7)
are completely determined by covector field L. Therefore (2.6) form a system of
partial differential equations with respect to functions L1, . . . , Ln. Further steps
are intended to study these equations. Note also that equations (2.6) are written
only for multidimensional case n > 3. In two-dimensional case n = 2 we have no
restrictions for generalized Legendre transformation (1.4).

3. Preliminary transformation of normality equations.

Let’s consider formula (2.7). Applying formula (2.4) to Ls in it, we derive the

following expression for covariant derivative ∇̃qL
s:

∇̃qL
s = ∇̃q

(
n∑

i=1

Li gis

)

=

n∑

i=1

∇̃qLi gis +

n∑

i=1

Li ∇̃qg
is =

n∑

i=1

giq gis −

−
n∑

i=1

n∑

a=1

n∑

k=1

Li gia ∇̃qgak gks =
n∑

i=1

giq gis −
n∑

i=1

n∑

a=1

n∑

k=1

Li gia ∇̃q∇̃kLa gks.

Upon substituting this expression into (2.7) for Ars we obtain

Ars = grs −

n∑

a=1

n∑

q=1

n∑

k=1

gqr gks La ∇̃q∇̃kLa. (3.1)

It is obvious that last term in (3.1) is symmetric with respect to indices r and s.
Therefore it makes no contribution to ultimate form of normality equations when
we substitute (3.1) into (2.6). Thus from (2.6) we derive

n∑

r=1

n∑

s=1

(grs − gsr)P i
r P j

s = 0. (3.2)
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Now let’s apply formula (2.3) to components of projector field P i
r and P j

s in (3.2):

n∑

r=1

n∑

s=1

(grs − gsr)P i
r P j

s =

n∑

r=1

n∑

s=1

(grs − gsr)

(

δi
r −

Li Lr

|L|2

)(

δj
s −

Lj Ls

|L|2

)

=

= gij − gji −
(Ľi − Li)Lj

|L|2
−

(Lj − Ľj)Li

|L|2
= gij − gji −

Ľi Lj − Li Ľj

|L|2
= 0.

Here Li, Lj , Ľi, and Ľj are determined by formulas (2.4) and (2.5). As a result of
the above calculations normality equations (2.6) are written as

gij −
Ľi Lj

|L|2
= gji −

Ľj Li

|L|2
. (3.3)

If we denote by uij left hand side of the equality (3.3), then gij is given by formula

gij = uij +
Ľi Lj

|L|2
, (3.4)

while normality equations (3.3) themselves are equivalent to symmetry of tensor u

with components uij . Thus, non-symmetric metric g is expressed through symmet-
ric tensor u by formula (3.4). This is basic observation for the next step.

4. Fine structure of metric tensor.

Let’s fix some point q = (p,v) of TM such that |L| 6= 0. This means that we fix
arguments of extended tensor fields in (3.4). Then values of g and u for that fixed
argument q are tensors from T 2

0 (p, M), while values of L and Ľ are vectors from
tangent space Tp(M). Tensors g and u of type (2, 0) can be treated as bilinear
forms (bilinear functions) with arguments in cotangent space T ∗

p (M):

g = g(x,y), u = u(x,y). (4.1)

Due to symmetry uij = uji bilinear form u in (4.1) is symmetric, i. e.

u(x,y) = u(y,x).

It is well known fact from linear algebra (see [14]) that each symmetric bilinear
form can be diagonalized. This means that one can choose some special base in
Tp(M) and its dual base in T ∗

p (M) such that matrix uij is diagonal

uij =

∥
∥
∥
∥
∥
∥
∥
∥

ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . .

...
0 0 . . . εn

∥
∥
∥
∥
∥
∥
∥
∥

. (4.2)

Here it is important to note that tensor field u is diagonalized at one fixed point
q = (p,v), not in whole neighborhood of that point.
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Lemma 4.1. For each point q ∈ TM , where |L| 6= 0, tensor field u and its matrix

(4.2) are degenerate, i. e. at least one number among ε1, . . . , εn is equal to zero.

Proof. Let’s multiply both sides of (3.4) by Lj and then sum up with respect to
index j. As a result we get the following equality:

Ľi =
n∑

j=1

gij Lj =
n∑

j=1

(

uij +
Ľi Lj

|L|2

)

Lj =
n∑

j=1

uij Lj + Ľi. (4.3)

Comparing left and right hand sides of the equality (4.3), we derive

n∑

j=1

uij Lj = 0. (4.4)

If L 6= 0, then the equality (4.4) means that detu = 0. This proves lemma for all
points q = (p,v), where L 6= 0. But |L| 6= 0 implies that covector L is non-zero.
Thus, lemma 4.1 is proved. �

Remark. Normality equation (2.6) is derived only for those points, where |L| 6= 0
(see [1] and [2]). Indeed, |L| is in denominator in formula (2.3) for P i

j . Hence
lemma 4.1 is sufficient result for our further purposes.

Lemma 4.1 means that bilinear form u has nonzero kernel. This is linear subspace
in cotangent space T ∗

p (M) defined as follows:

Keru = {x ∈ T ∗

p (M) : u(x,y) = 0 ∀y ∈ T ∗

p (M)}. (4.5)

In terms of kernel (4.5) the equality (4.4) now can be written as

L ∈ Keru 6= {0}. (4.6)

Lemma 4.2. For symmetric bilinear form u in T ∗

p (M) defined by (3.4) its rank is

n − 1 and the dimension of its kernel is equal to unity, i. e.

ranku = n − 1, dimKeru = 1. (4.7)

Proof. Let’s multiply both sides of (3.4) by P s
j and sum up with respect to double

index j. As a result we obtain the following equality

n∑

j=1

P s
j gij =

n∑

j=1

uij P s
j =

n∑

j=1

uij

(

δs
j −

Lj Ls

|L|2

)

= uis. (4.8)

Here in the above calculations we used (4.4). Sum in left hand side of (4.8) rep-
resents matrix product of two matrices: P s

j and gij transposed. Matrix gij is
non-degenerate, while rank of projection operator P is equal to n− 1. This proves
the equalities (4.7) and lemma 4.2 in whole. �

Lemma 4.3. Matrix equality gij = uij +Ai Lj
is equivalent to normality equations

(3.2) if and only if matrix uij is symmetric and degenerate.



ON THE SUBSET OF NORMALITY EQUATIONS . . . 7

Proof. Above we have derived the equality (3.4) from normality equation (3.2)
and we have proved that matrix uij in (3.4) is degenerate (see lemma 4.1 and

lemma 4.2). Denoting Ai = Ľi/|L|2 we get the equality gij = uij + Ai Lj. Thus,
direct proposition of lemma 4.3 is proved.

Let’s prove converse proposition. Suppose that metric tensor is given by the
equality gij = uij + Ai Lj, where Lj are determined by formula (2.4), Ai are
components of some vector, while matrix uij is symmetric and degenerate. Then
there exists some covector x 6= 0 with components x1, . . . , xn such that

n∑

j=1

uij xj = 0,

n∑

i=1

xi uij = 0. (4.9)

Applying relationships (4.9) to the equality gij = uij + Ai Lj, we get

xj =
n∑

i=1

xi gij =
n∑

i=1

xi Ai L
j

= 〈x |A〉 · L
j
,

x̌i =

n∑

j=1

gij xj =

n∑

j=1

Ai L
j
xj = 〈x |L〉 · Ai.

(4.10)

From first equality (4.10) we derive that covectors x and L are collinear:

xi =

n∑

j=1

xj gji =

n∑

j=1

〈x |A〉 L
j
gji = 〈x |A〉 · Li. (4.11)

Note that x 6= 0 and L 6= 0. Hence 〈x |A〉 6= 0. Substituting formula (4.11) for xj

into both sides of second equality (4.10), we obtain

〈x |A〉 · Ľi = 〈x |A〉 · |L|2 · Ai. (4.12)

Since 〈x |A〉 6= 0, we can cancel this factor in (4.12). Then we get formula for Ai:

Ai =
Ľi

|L|2
. (4.13)

Substituting (4.13) back into the equality gij = uij + Ai Lj , we get formula co-
inciding with (3.4). Using symmetry of uij , we can transform it to (3.3). Then
multiplying (3.3) by P r

i P s
j , upon summation with respect to double indices r and

s we rederive normality equations (3.2). Lemma 4.3 is proved. �

Now let’s multiply (3.4) by gir gjs and let’s sum resulting equality with respect
to double indices i and j. Then we introduce the following notations:

usr =

n∑

i=1

n∑

j=1

uij gir gjs, Ľr =

n∑

i=1

Ľi gir. (4.14)

Here Ľ1, . . . , Ľn are components of extended covector field left dual to vector field
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Ľ, while vector field Ľ is right dual to initial covector field L. In terms of these
newly introduced notations (4.14) transformed equality (3.4) is written as

gsr = usr +
Ls Ľr

|L|2
. (4.15)

Matrix usr in (4.15) is symmetric. This matrix is degenerate, its rank is equal to
n − 1. This follows from (4.6) due to (4.14). Moreover, gir and gjs in (4.14) are
components of non-degenerate matrix, therefore (4.15) is equivalent to (3.4).

Lemma 4.4. Matrix equality gsr = usr+Ls Ar is equivalent to normality equations

(3.2) if and only if matrix usr is symmetric and degenerate.

Proof. Note that matrix equality (4.15) with symmetric degenerate matrix usr,
which was derived above from normality equation (3.4), is particular form of the
equality gsr = usr+Ls Ar, where Ar = Ľr/|L|

2. This means that direct proposition
of lemma 4.4 is proved.

Let’s prove converse proposition. Suppose that metric tensor is given by the
equality gsr = usr + Ls Ar, where matrix uij is symmetric and degenerate. Then
there exists some vector X 6= 0 with components X1, . . . , Xn such that

n∑

r=1

usr Xr = 0,

n∑

s=1

Xs usr = 0. (4.16)

Applying relationships (4.16) to the equality gsr = usr + Ls Ar, we get

X̌s =
n∑

r=1

gsr Xr =
n∑

r=1

Ls Ar Xr = Ls · 〈A |X〉 ,

Xr =

n∑

s=1

Xs gsr =

n∑

s=1

Xs Ls Ar = Ar · 〈L |X〉 .

(4.17)

From first equality (4.17) we derive that vectors X and Ľ are collinear:

Xr =

n∑

s=1

grs X̌s =

n∑

s=1

〈A |X〉 grs Ls = 〈A |X〉 · Ľr. (4.18)

Note that X 6= 0 and Ľ 6= 0. Hence 〈A |X〉 6= 0. Substituting formula (4.18) for
Xs into both sides of second equality (4.17) and taking into account (4.14), we get

〈A |X〉 · Ľr = 〈A |X〉 · |L|2 · Ar. (4.19)

Since 〈A |X〉 6= 0, we can cancel this factor in (4.19). As a result we obtain

Ar =
Ľr

|L|2
. (4.20)

Substituting (4.20) back into the equality gsr = usr+Ls Ar, we get formula coincid-
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ing with (4.15). Remember that (4.15) is equivalent to (3.4) (see above). Further
from (3.4) we can rederive normality equations (3.2). This step is the same as in
proving previous lemma 4.3. Thus, lemma 4.4 is proved. �

5. Skew symmetry and differential forms.

Now we shall draw some conclusions from lemma 4.4. Lemma 4.4 asserts that
functions L1, . . . , Ln of the form (1.3) define generalized Legendre transformation
(1.4) satisfying normality equations (2.6) if and only if their partial derivatives

gsr = ∇̃rLs are related to them by means of the equality

∂Ls

∂vr
= usr + Ls Ar, (5.1)

where usr are components of some symmetric degenerate extended tensor field u,
which is not initially predefined, and Ar are components of some extended covector
field A, which also is not initially predefined. Alternating (5.1), we get

∂Ls

∂vr
−

∂Lr

∂vs
= Ls Ar − Lr As. (5.2)

For matrix usr due to its symmetry usr = urs from (5.1) we derive

usr =
1

2

(
∂Ls

∂vr
+

∂Ls

∂vr

)

−
Ls Ar + Lr As

2
. (5.3)

If functions A1, . . . , An are given, then (5.2) can be treated as differential equa-
tions for functions L1, . . . , Ln. Suppose we take some covector field A and solve
differential equations (5.2). Does it mean that we can reconstruct the equality (5.1)
and further get the solution of normality equations (2.6) ? Indeed, we could define
matrix urs by formula (5.3) and then derive (5.1) from (5.2) and (5.3). Anyway, ma-
trix urs determined by formula (5.3) is symmetric, but it could be non-degenerate.
In this case lemma 4.4 is not applicable and further thread of reasoning is torn.

However, thing are not so bad. Note that partial differential equations (5.2)
admit gauge transformations of the following form:

Lr → Lr, Ar → Ar − λLr. (5.4)

Here λ is some scalar factor, i. e. some extended scalar field in M . Applying gauge
transformation (5.4) we get new fields A′ and u′ from initial ones:

A′

r = Ar − λLr. u′

sr = usr + λLs Lr. (5.5)

If matrix usr in (5.5) is non-degenerate, then we can calculate determinant of u′

sr:

det(u′

sr) = det(u′

sr)

(

1 + λ

n∑

s=1

n∑

r=1

wrs Lr Ls

)

= 0. (5.6)

Here wrs is inverse matrix for urs. Looking at characteristic equation (5.6), we see
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that it is linear with respect to scalar factor λ. This means that it is solvable if and
only if double sum in round brackets is nonzero:

‖L‖u =

n∑

s=1

n∑

r=1

wrs Lr Ls 6= 0. (5.7)

Now we shall leave inequality (5.7) for separate study in separate paper and we
shall formulate main result of this section in the following theorem.

Theorem 5.1. Any solution of differential equations (5.2) defines locally diffeo-

morphic generalized Legendre map (1.4) if metric tensor (2.2) is non-degenerate

and if one of the following two conditions is fulfilled: matrix (5.3) is degenerate or

‖L‖u 6= 0, if matrix (5.3) is non-degenerate.

Note that differential equations (5.2) have no partial derivatives with respect
to x1, . . . , xn. This means that we can fix some arbitrary point p ∈ M and
consider partial differential equations (5.2) within fixed fiber of tangent bundle.
Then extended covector fields L and A can be treated as differential 1-forms:

L =

n∑

i=1

Li dvi, A =

n∑

i=1

Ai dvi. (5.8)

In terms of differential forms (5.8) differential equations (5.2) are written as

dL = L ∧ A. (5.9)

Remark. Here we should especially emphasize that differential forms (5.8) are de-
fined only within separate fibers of tangent bundle TM . They cannot be canonically
extended as 1-forms in TM in whole.

6. Compatibility conditions.

Initial normality equations (2.6), as well as their transformed counterparts (5.9),
form overdetermined system of partial differential equations for the functions (1.3).
They should be studied for compatibility. Let’s apply external differentiation op-
erator d to both sides of (5.9). As a result we get

0 = d (dL) = dL ∧ A− L ∧ dA = L ∧ A ∧ A − L ∧ dA = −L ∧ dA.

This means that external product L ∧ dA is equal to zero:

L ∧ dA = 0 (6.1)

Lemma 6.1. For 1-form L 6= 0 and differential m-form Ω the equality L ∧ Ω = 0
is equivalent to the equality Ω = L ∧ B for some differential (m − 1)-form B.

Lemma 6.1 is special case of division theorem by E. Cartan, see proof in [15].
Applying lemma 6.1 to Ω = dA in (6.1), we get the equality

dA = L ∧ B, (6.2)
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where B is some differential 1-form within separate fibers of tangent bundle TM .
Differential equations (6.2) form compatibility condition for equations (5.9). They
have almost the same shape as (5.9). Therefore we shall treat them similarly:

0 = d (dA) = dL ∧ B− L ∧ dB = L ∧ A ∧ B− L ∧ dB = L ∧ (A ∧ B− dB).

Applying lemma 6.1 to the above equality, we get differential equations for B:

dB = A ∧ B + L ∧ C. (6.3)

Here C is some other 1-form. Differential equations (6.3) are a little bit more
complicated than (5.9) and (6.1). But nevertheless we apply operator d to them:

d (dB) = dA ∧ B− A ∧ dB + dL ∧ C− L ∧ dC = L ∧ B ∧B−

−A ∧ A ∧ B− A ∧ L ∧ C + L ∧ A ∧ C− L ∧ dC.

Applying lemma 6.1 to the above equality, we get differential equations for C:

dC = 2A ∧C + L ∧ D. (6.4)

Now again, we apply external differentiation d to the equations (6.4) and we get

d (dC) = 2 dA ∧ C− 2A ∧ dC + dL ∧ D − L ∧ dD = 2L ∧B ∧ C−

−4A ∧ A ∧ C− 2A ∧ L ∧D + L ∧ A ∧ D − L ∧ dD.

Applying lemma 6.1 to this equality, we derive differential equations for D:

dD = 3A ∧ D + 2B ∧ C + L ∧ E. (6.5)

Now it is clear that further steps require special notations and study of recurrent
procedure underlying all above formulas (5.9), (6.2), (6.3), (6.4), (6.5). Let’s denote

L = A0, A = A1, B = A2,
(6.6)

C = A3, D = A4, E = A5.

In terms of notations (6.6) introduced just above we can rewrite our equations as

dA0 = A0 ∧A1, dA1 = A0 ∧ A2,
(6.7)

dA2 = A0 ∧A3 + A1 ∧ A2, dA3 = A0 ∧ A4 + 2A1 ∧ A3.

Equations (6.5) are a little bit more complicated. They are written as follows:

dA4 = A0 ∧ A5 + 3A1 ∧ A4 + 2A2 ∧A3. (6.8)

Looking at (6.7) and (6.8), one can formulate a conjecture concerning general struc-
ture of all such equations, for those, which are already written, and for all others.
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Conjecture 6.1. Differential equations (5.9) lead to infinite series of compatibility

conditions that in terms of notations (6.6) can be written as

dAk =

[k2]∑

i=0

Ci
k+1 Ai ∧Ak+1−i, where C1

k+1 = 1. (6.9)

Here Ci
k+1

are some constants similar to binomial coefficients, but not coinciding

with them. They should be calculated recurrently. By square brackets in upper limit

of sum in (6.9) we denote entire part of fraction k/2.

First of all let’s derive recurrent relationships for coefficients Ci
k+1 in (6.9). Ap-

plying external differentiation d to both sides of (6.9), we get

0 = d (dAk) =

[k2]∑

i=0

Ci
k+1 (dAi ∧ Ak+1−i − Ai ∧ dAk+1−i) =

= A0 ∧ A1 ∧ Ak+1 − A0 ∧ dAk+1 +

[k2]∑

i=1

Ci
k+1

(
C0

i+1 A0 ∧ Ai+1 +

+ . . .
)
∧Ak+1−i −

[k2]∑

i=1

Ci
k+1 Ai ∧

(
C0

k+2−i A0 ∧Ak+2−i + . . .
)
.

(6.10)

Terms denoted by dots in the above equality have no entry of A0. Below we shall
prove that they do cancel each other. Now from (6.10) we derive

A0 ∧



−dAk+1 +

[k2]∑

i=1

Ci
k+1 Ai+1 ∧ Ak+1−i +

+ A1 ∧ Ak+1 +

[k2]∑

i=1

Ci
k+1 Ai ∧ Ak+2−i



 = 0.

(6.11)

Applying lemma 6.1 to (6.11), we derive the following equality for dAk+1:

dAk+1 = A0 ∧ Ak+2 + A1 ∧ Ak+1 +

+

[k2]∑

i=1

Ci
k+1 Ai ∧ Ak+2−i +

[k+2

2 ]
∑

i=2

Ci−1

k+1
Ai ∧ Ak+2−i.

(6.12)

Comparing (6.12) and (6.9), we can write the following recurrent formula for Ci
k+1:

Ci
k+2 =







1 for i = 0;

Ci−1

k+1
+ Ci

k+1
for 0 < 2i < k + 1;

Ci−1

k+1
for 2i = k + 1.

(6.13)

Though formula (6.13) is quite similar to corresponding recurrent formula for bi-
nomial coefficients, it doesn’t coincide with that formula.
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Now let’s study terms denoted by dots in formula (6.10). Total sum of all these
terms is given by the following explicit formula:

S =

[k2]∑

i=1

[i

2]∑

s=1

Ci
k+1 Cs

i+1 As ∧ Ai+1−s ∧ Ak+1−i −

−

[k2]∑

r=1

[k+1−r

2 ]
∑

e=1

Cr
k+1 Ce

k+2−r Ar ∧ Ae ∧ Ak+2−r−e.

(6.14)

Indices in external product in first sum of formula (6.14) satisfy inequalities

1 6 i < k + 1 − i, 1 6 s < i + 1 − s. (6.15)

Inequalities (6.15) mean that indices in external product As∧Ai+1−s ∧Ak+1−i are
properly arranged, i. e. they are in growing order:

s < i + 1 − s < k + 1 − i.

Here are inequalities for indices in external product Ar ∧ Ae ∧Ak+2−r−e:

1 6 r < k + 1 − r, 1 6 e < k + 2 − r − e. (6.16)

Inequalities (6.16) cannot provide proper ordering of indices r, e, k + 2 − r − e.
Therefore we consider three possible subranges for index r:

Subrange 1: r < e; (6.17)

Subrange 2: e < r < k + 2 − r − e; (6.18)

Subrange 3: k + 2 − r − e < r. (6.19)

Inequalities (6.16) define polygon ABCD on re-plane (see Fig. 6.1 below), sides
AB and AD are closed, sides BC and CD are open. Subranges (6.17), (6.18), and
(6.19) break this polygon into three triangular domains ABE, ADE, and CDE.
Segments AE and DE are in open parts of their boundaries.

Subrange 1. In this subrange indices in external product Ar ∧Ae ∧Ak+2−r−e

are properly ordered. Therefore we can match them with indices of another external
product As ∧Ai+1−s ∧ Ak+1−i, i. e. we can write

r = s, e = i + 1 − s, k + 2 − r − e = k + 1 − i. (6.20)

Third equality in (6.20) follows from first two ones. Therefore we can treat first two
equalities as a map from is-plane to re-plane. This is linear invertible map taking
integer points to integer point. So is inverse map:

{
r = s,

e = i + 1 − s,

{
i = r + e − 1,

s = r.
(6.21)
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Due to maps (6.21) triangle ABE is associated with triangle FGH (see Fig. 6.2
below). Indeed, we have the following correspondence of sides and inequalities:

AB (r > 1) −→ FG (s > 1);

BE (e < k + 2 − r − e) −→ GH (s > 2 i − k); (6.22)

EA (e > r) −→ HF (s < i + 1 − s).

Due to inequalities in right column of (6.22) we see that side FG of subrange 1
mapped to is-plane is closed. Other two sides GH and HF are open.

Subrange 2. In this subrange indices in external product Ar ∧Ae ∧Ak+2−r−e

are not properly ordered. We need to transpose first two terms in it. As a result
we get external product Ae ∧ Ar ∧ Ak+2−r−e that can be matched with external
product As ∧Ai+1−s ∧Ak+1−i. This yields another pair of mutually inverse maps
linking re-plane with is-plane. These maps are given by formulas

{
r = i + 1 − s,

e = s,

{
i = r + e − 1,

s = e.
(6.23)

Applying (6.23) to inequalities defining sides of triangle AED, we get

AE (e < r) −→ FH (s < i + 1 − s);

ED (r < k + 2 − r − e) −→ HG (s > 2 i − k); (6.24)

DA (e > 1) −→ GF (s > 1).

Its important that subrange 2 is mapped onto the same triangle in is-plane as
subrange 1, and again side GF is closed, while other two sides FH and HG of
triangle FHG are open.

Subrange 3. In this subrange indices in external product Ar ∧Ae ∧Ak+2−r−e

also are not properly ordered. We need to move Ar to third position. Then we get
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external product Ae ∧Ak+2−r−e ∧Ar that can be matched with external product
As ∧ Ai+1−s ∧ Ak+1−i. This matching yields two maps inverse to each other:

{
r = k + 1 − i,

e = s,

{
i = k + 1 − r,

s = e.
(6.25)

Applying (6.25) to inequalities defining sides of triangle DEC, we get

DE (k + 2 − r − e < r) −→ GH (s > 2 i − k);

EC (e < k + 2 − r − e) −→ HK (s < i + 1 − s); (6.26)

CD (r < k + 1 − r) −→ KG (2 i > k + 1).

Formulas (6.26) mean that subrange 3 is mapped onto the smaller triangle GHK
(see Fig. 6.2). All three sides of this triangle are open.

Thus, due to (6.22), (6.24), and (6.26) we see that under the action of maps
(6.21), (6.23), and (6.25) two parts of tetragone ABCD covers triangle FGH twice,
while third part of this tetragone covers smaller triangle GHK. All maps (6.21),
(6.23), and (6.25) are given by linear functions with entire coefficients. Hence they
map grid of entire points in re-plane onto the grid of entire points in is-plane and
vice versa. Note also that inequalities (6.15) define triangle FGK complementary to
triangle GHK within triangle FGH . This means that each entire point of triangle
FGH with closed side FG is associated with three terms in sum (6.14), except for
those on segment GK. And we have two terms in sum (6.14) associated with each
inner entire point of segment GK. Therefore in order to prove that S = 0 in (6.14)
we should prove series of identities for coefficients Ci

k. First identity

Ci
k+1 Cs

i+1 − Cs
k+1 Ci+1−s

k+2−s + Ci+1−s
k+1

Cs
k+1−i+s = 0 (6.27)

should be fulfilled within open triangle FGK. The same identity (6.27) should be
fulfilled on its side FG, except for ending points F and G. Next identity

Ci+1−s
k+1

Cs
k+1−i+s − Cs

k+1 Ci+1−s
k+2−s − Ck+1−i

k+1
Cs

i+1 = 0 (6.28)

should be fulfilled within open triangle GHK. For exceptional points, i. e. for entire
points within open segment GK, we should prove the identity

Ci+1−s
k+1

Cs
k+1−i+s − Cs

k+1 Ci+1−s
k+2−s = 0. (6.29)

Note that open segment GK has entire points if and only if k is odd number not less
than 7, i. e. we should set k = 2 m + 7, where m is arbitrary non-negative number.
In this case i = m + 4, while s = p + 2, where p is arbitrary non-negative number
such that 2 p < m + 1. Under these conditions identity (6.29) reduces to

Cm+3−p
2 m+8 Cp+2

m+6+p − Cp+2

2 m+8 Cm+3−p
2 m+7−p = 0. (6.30)

In order to prove all these identities we should state formal definition of coefficients
Ci

k, other than formula (6.9), which is only a conjecture yet.
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Definition 6.1. Normality coefficients Ci
k are determined for all integer k > 1 and

all integer i such that 0 6 2 i < k by recurrent formula

Ci
k+1 =







1 for i = 0,

Ci−1

k + Ci
k for 0 < 2i < k,

Ci−1

k for 2i = k

(6.31)

and by value of initial coefficient C0
1 = 1 in the series.

It is easy to see that definition 6.1 is correct and self-consistent. Formula (6.31)
is actually the same formula as (6.13). Now let’s calculate few initial coefficients in
the series and let’s arrange them as a table. Applying formula (6.31), we get

C0
1 = 1,

C0
2 = 1,

C0
3 = 1, C1

3 = 1,

C0
4 = 1, C1

4 = 2,

C0
5 = 1, C1

5 = 3, C2
5 = 2,

C0
6 = 1, C1

6 = 4, C2
6 = 5,

C0
7 = 1, C1

7 = 5, C2
7 = 9, C3

7 = 5,

C0
8 = 1, C1

8 = 6, C2
8 = 14, C3

8 = 14,

C0
9 = 1, C1

9 = 7, C2
9 = 20, C3

9 = 28, C4
9 = 14,

C0
10 = 1, C1

10 = 8, C2
10 = 27, C3

10 = 48, C4
10 = 42,

C0
11 = 1, C1

11 = 9, C2
11 = 35, C3

11 = 75, C4
11 = 90, C5

11 = 42,

C0
12 = 1, C1

12 = 10, C2
12 = 44, C3

12 = 110, C4
12 = 165, C5

12 = 132.

One can easily write general formula for elements in first two columns of this table:

C0
k = 1, C1

k = k − 2. (6.32)

General formula for elements of third column is less obvious:

C2
k =

(k − 2)(k − 3)

2
− 1. (6.33)

However, one can go further and write general formula for all elements of the table:

Ci
k =

i∏

s=1

k − 1 − s

s
−

k−i∏

s=1

k − 1 − s

s
. (6.34)

Formula (6.34) generalizes (6.32) and (6.33). In order to prove this general formula
it is sufficient to make sure that it is correct for initial part of the above table and
then test recursion (6.31) for it. When this is done, proof of the identities (6.27),
(6.28), and (6.30) is nothing, but pure calculations.
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Thus, we have proved that S = 0 in (6.14), and hence we have proved conjec-
ture 6.1. Now we can state it as a theorem.

Theorem 6.1. Differential equations (5.9) with L = A0 and A = A1 lead to

infinite series of compatibility conditions (6.9), where coefficients Ci
k in (6.9) are

determined by formula (6.34).

7. An example of solution of normality equations.

Theorem 6.1 and formula (6.9) give a way for constructing special solutions of
normality equations (5.9). Let’s write first two equations given by formula (6.9)
and let’s loop them assuming that A2 = A0. Then we have

dA0 = A0 ∧ A1, dA1 = A0 ∧ A0 = 0. (7.1)

Second equation (7.1) means that A1 is closed 1-form within separate fibers of
tangent bundle. Locally it is represented as A1 = dϕ for some scalar function in
TM . First equation (7.1) for A0 = L then is written as

dL = L ∧ dϕ. (7.2)

Let’s define another 1-form M = eϕ L. For this form from (7.2) we derive:

dM = eϕ dϕ ∧ L + eϕ dL = eϕ (dϕ ∧ L + L ∧ dϕ) = 0.

Thus, M appears to be closed form. Like A1 above, it is determined by some scalar
function: M = dL. For differential form L this yields

L = e−ϕ dL, (7.3)

where ϕ = ϕ(x1, . . . , xn, v1, . . . , vn) and L = L(x1, . . . , xn, v1, . . . , vn). Remember
that components of differential form L determine generalized Legendre transforma-
tion λ, see (5.8) and functions (1.3). For these functions from (7.3) we derive

Li = e−ϕ ∂L

∂vi
. (7.4)

Example. Let’s consider three dimensional case n = 3 and let’s choose functions

ϕ = −v1, L = v1 +
1

2

(
(v2)2 + (v3)2

)
. (7.5)

Applying formula (7.4) to functions (7.5), in this case we get

L1 = ev1

, L2 = v2 ev1

, L2 = v3 ev1

. (7.6)

These three functions define regular fiber-preserving map from TM to T ∗M . Its
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Jacobi matrix can be calculated explicitly. Indeed, applying (2.2) to (7.6), we get

gij = ev1

·

∥
∥
∥
∥
∥
∥

1 0 0
v2 1 0
v3 0 1

∥
∥
∥
∥
∥
∥

. (7.7)

We also can explicitly calculate inverse matrix for lower triangular matrix (7.7):

gij = e−v1

·

∥
∥
∥
∥
∥
∥

1 0 0
−v2 1 0
−v3 0 1

∥
∥
∥
∥
∥
∥

. (7.8)

Now, using matrix (7.8), we apply formula (2.4) to components of covector L. As
a result we get vector L with the following components:

L1 = 1 − (v2)2 − (v3)2, L2 = v2, L2 = v3. (7.9)

Modulus of vector L calculated in non-symmetric metric (7.7) is given by formula

|L|2 =

n∑

i=1

Li Li = ev1

. (7.10)

Now we are able to calculate matrix of projection operator P:

P i
j =

∥
∥
∥
∥
∥
∥
∥
∥

1 − L1 −L1 v2 −L1 v3

−v2 1 − (v2)3 −v2 v3

−v3 −v2 v3 1 − (v3)2

∥
∥
∥
∥
∥
∥
∥
∥

. (7.11)

We used formula (2.3) for P i
j and formula (7.10) for |L|2. We keep L1 in (7.11) as

notation for the sake of brevity in order to have formula looking pretty well. Its
value is given by formula (7.9).

Next step is to calculate components of tensor field A given by formula (2.7).
Upon alternating matrix Ars we get the following one:

Ars − Asr = e−v1

·

∥
∥
∥
∥
∥
∥

0 v2 v3

−v2 0 0
−v3 0 0

∥
∥
∥
∥
∥
∥

. (7.12)

Substituting (7.12) and (7.11) into (2.6), we easily find that normality equations
(2.6) are fulfilled. Thus, we have constructed an example of generalized Legendre
transformation λ satisfying normality equations. It is given by functions (7.6). This
is not classical Legendre transformation. However, it differs from classical one (1.2)
only by scalar factor eϕ (see formula (7.4)). Therefore we say that (7.6) is trivial
example of non-classical Legendre transformation satisfying normality equations.

In order to construct non-trivial solution of normality equations (2.6) one should
choose another way of looping for the chain of differential equations (6.9). For
example we can set A3 = A0. This leads to more complicated calculations than we
carried out above. Therefore this example will be studied in separate paper.
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