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TENSOR FUNCTIONS OF TENSORS

AND THE CONCEPT OF EXTENDED TENSOR FIELDS.

Ruslan Sharipov

Abstract. Tensor fields depending on other tensor fields are considered. The con-
cept of extended tensor fields is introduced and the theory of differentiation for such
fields is developed.

1. Tensors and tensor fields on manifolds.

Let M be some n-dimensional smooth real manifold. Then each point p ∈M has
some neighborhood U bijectively mapped onto an open set V in the n-dimensional
space R

n. This means that any point p ∈ U is associated with some unique vector
in V with the coordinates x1(p), . . . , xn(p). The set V ⊂ R

n is called a local map
or a local chart of the manifold M , while the numbers x1(p), . . . , xn(p) are called
the coordinates of the point p in the local chart V . In a not too formal terminology
the set U ⊂M is also called a local map or a local chart.

The whole manifold is covered by local charts. If two local charts U and Ũ do
overlap, i. e. if U ∩ Ũ 6= ∅, then the so-called transition functions arise:






x̃1 = x̃1(x1, . . . , xn),

. . . . . . . . . . . . . . .

x̃n = x̃n(x1, . . . , xn),






x1 = x1(x̃1, . . . , x̃n),

. . . . . . . . . . . . . . .

xn = xn(x̃1, . . . , x̃n).

(1.1)

They relate the local coordinates of a point p ∈ U ∩ Ũ in two charts. In the case
of smooth manifolds the transition functions (1.1) for all pairs of overlapping maps
are smooth functions. The partial derivatives of (1.1) form the transition matrices:

Sij =
∂xi

∂x̃j
, T ij =

∂x̃i

∂xj
. (1.2)

They are inverse to each other: S = T−1. By tradition S is called the direct
transition matrix, while T is called the inverse transition matrix.

All what was said just above is a standard definition of a smooth real manifold.
We give it here in order to make this paper understandable not only to professional
mathematicians, but to physicists and to students majoring in physics and engi-
neering. With the same purpose in mind, below we shall combine the coordinate
and coordinate-free approaches.
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2 RUSLAN SHARIPOV

Continuing our introductory section, let’s consider the following differential
operators associated with two local coordinate systems in M :

Ei =
∂

∂xi
, Ẽi =

∂

∂x̃i
. (1.3)

From (1.1) and (1.2) it is easy to derive that the differential operators Ei and Ẽj

are related to each other through the following equalities:

Ẽj =

n∑

i=1

Sij Ei, Ei =

n∑

j=1

T
j
i Ẽj . (1.4)

The three-dimensional Euclidean space E, which we observe in our everyday
life, is an example of a smooth manifold. In this case x1, . . . , xn and x̃1, . . . , x̃n

are interpreted as Cartesian and/or curvilinear coordinates in E. The differential
operators (1.3) can be associated with the frame vectors of moving frames of two
curvilinear coordinate systems (see [1] and [2]) because (1.4) coincide with the
corresponding relationships for the frame vectors.

A smooth surface in the space E is another example of a smooth manifold. In
this case the differential operators (1.3) can be associated with the tangent vectors
forming a basis in the tangent plane to that surface (see [2]). This is the reason
why in the case of an arbitrary smooth manifold M the operators (1.3) are called
tangent vectors. If some point p ∈ U is fixed, then the tangent space Tp(M) is
defined as the span of the vectors (1.3) at that point:

Tp(M) =
〈
E1, . . . , En

〉
=
〈
Ẽ1, . . . , Ẽn

〉
. (1.5)

The tangent spaces Tp(M) and Tq(M) of different points p 6= q are understood as
two different n-dimensional vector spaces1.

Definition 1.1. A vector field X is a vector-valued function that maps each point
p ∈M to some vector X(p) ∈ Tp(M).

This is an invariant (coordinate-free) definition of a vector field. Due to (1.5)
one can expand the vector X(p) in two different bases:

X(p) =
n∑

i=1

X i Ei, X(p) =
n∑

j=1

X̃j Ẽi. (1.6)

Here X i = X i(p) = X i(x1, . . . , xn) and X̃ i = X̃ i(p) = X̃ i(x̃1, . . . , x̃n) are the
components of the vector X(p) in two different local charts. Due to (1.4) and (1.6)
they are related to each other according to the formulas:

X i =

n∑

j=1

Sij X̃
j, X̃j =

n∑

i=1

T
j
i X

i. (1.7)

The formulas (1.7) form the base for coordinate definition of a vector field (see [1]
and [2]). Here this definition is formulated as follows.

1 Informally, one can imagine a manifold M as a cat with the hairs Tp(M) growing from each
point p on its skin.
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Definition 1.2. A vector field X is a geometric object in each local chart repre-
sented by its components X i = X i(x1, . . . , xn) and such that under a change of a
local chart its components are transformed according to the formulas (1.7).

Let T ∗

p (M) be the dual space for the tangent space Tp(M) (see [3] for the defi-

nition of a dual space). Then consider the following tensor product1:

T rs (p,M) =

r times︷ ︸︸ ︷
Tp(M) ⊗ . . .⊗ Tp(M)⊗T ∗

p (M) ⊗ . . .⊗ T ∗

p (M)
︸ ︷︷ ︸

s times

. (1.8)

The tensor product (1.8) is also a vector space associated with the point p. So,
each point of a smooth manifold carries a great many mathematical constructs1

including but not limited to those considered in this paper. Some of these constructs
correspond to real physical fields, others are waiting their time to be associated with
something in the nature.

Definition 1.3. A tensor field X of the type (r, s) is a tensor-valued function that
maps each point p ∈M to some tensor X(p) ∈ T rs (p,M).

In order to represent a tensor field in a local map we need to have some basis
in the space (1.8). The differentials dx1, . . . , dxn form a basis in the dual space
T ∗

p (M). This basis is dual to the basis of tangent vectors E1, . . . , En in Tp(M):

〈
dxi |Ej

〉
= δij =

{
1 for i = j,

0 for i 6= j.
(1.9)

By angular brackets in (1.9) we denote the scalar product of a vector and a covector
(see definition in Chapter III of [3]). Now let’s denote

E
j1... js
i1... ir

= Ei1 ⊗ . . .⊗ Eir ⊗ dxj1 ⊗ . . .⊗ dxjs . (1.10)

The local2 tensor fields (1.10) form a basis in the space (1.8) at all points p ∈ U .
Therefore, any tensor field X of the type (r, s) admits the expansion

X =

n∑

i1=1

. . .

n∑

ir=1

n∑

j1=1

. . .

n∑

js=1

X i1... ir
j1... js

E
j1... js
i1... ir

. (1.11)

The coefficients X i1... ir
j1... js

= X i1... ir
j1... js

(x1, . . . , xn) in the expansion (1.11) are called
the components of the tensor field X in the local chart U . Under a change of a
local chart they are transformed as follows:

X i1... ir
j1... js

=
n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
X̃h1... hr

k1... ks
, (1.12)

1 One can imagine T ∗

p (M) and T r
s (p, M) as other hairs on the skin of that our cat growing

from the same point p as Tp(M). However, I don’t know if some real animal can have a bunch of
hairs on the same root.

2 The tensor fields (1.10) are defined only within the local chart U .
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The transformation rule can be inverted. The inverse transformation is written as

X̃ i1... ir
j1... js

=

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
Xh1... hr

k1... ks
. (1.13)

An alternative definition of a tensor field is based on the transformation rules (1.12)
and (1.13) for its components.

Definition 1.4. A tensor field X of the type (r, s) is a geometric object in each

local chart represented by its components X i1... ir
j1... js

= X i1... ir
j1... js

(x1, . . . , xn) and such
that under a change of a local chart its components obey the transformation
rules (1.12) and (1.13).

2. Tangent bundle, cotangent bundle,

and other tensor bundles.

Let p be some point of a smooth real manifold M and let v ∈ Tp(M) be some
tangent vector at the point p. The set of all pairs q = (p,v) forms another smooth
real manifold. It is called the tangent bundle1 of M and denoted by TM . The map
π : TM → M that takes a point q = (p,v) of TM to the point p ∈ M is called
the canonical projection of the tangent bundle TM onto the base manifold M . If a
local chart U on M is given, a point q = (p,v) of TM is represented by 2n variables

x1, . . . , xn, v1, . . . , vn, (2.1)

where x1, . . . , xn are the local coordinates of the point p = π(q) and v1, . . . , vn

are the components of the tangent vector v:

v = v1 E1 + . . .+ vn En. (2.2)

Hence, we have dim(TM) = 2 dim(M). Tangent bundles naturally arise in con-
sidering Newtonian dynamical systems with holonomic constraints (see theses [4],
[5], and the series of papers [6–23]). In mechanics a base manifold M is called
a configuration space, TM is called a phase space, and (2.2) is interpreted as the
velocity vector of a point moving within M .

Let p ∈ T ∗

p (M) be some covector at the point p ∈ M . The set of all pairs
q = (p,p) forms a smooth real manifold which is called the cotangent bundle of M .
It is denoted T ∗M . In the case of cotangent bundle T ∗M we also have the canonical
projection π : T ∗M → M that takes a point q = (p,p) to the point p of the base
manifold M . In a local chart a point q = (p,p) is represented by 2n variables

x1, . . . , xn, p1, . . . , pn, (2.3)

where x1, . . . , xn are the local coordinates of the point p = π(q) and p1, . . . , pn
are the components of the covector p ∈ T ∗

p (M):

p = p1 dx
1 + . . .+ pn dx

n. (2.4)

1 Being more strict, TM is called the total space of a tangent bundle, while a tangent bundle
itself is a whole construct including a total space, a base, and a projection map π : TM → M .
However, in this paper we use more loose terminology.
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For the dimension of a cotangent bundle we have dim(T ∗M) = 2 dim(M). Cotan-
gent bundles naturally arise when one passes from Lagrangian dynamical systems
to the corresponding Hamiltonian dynamical systems. In this case T ∗M is inter-
preted as the p-representation of a phase space TM , while TM is understood as
the v-representation of T ∗M (see papers [24–30]). In Hamiltonian dynamics the
covector (2.4) is called the momentum covector.

Tensor bundles are defined by analogy to TM and T ∗M . Let p be some point
of the base manifold M and let T be some tensor of the type (r, s) at this point.
The set of all pairs q = (p,T) forms a smooth real manifold T rsM of the dimension
dim(T rsM) = n + nr+s. It is called the tensor bundle of the type (r, s) over the
base M . The map π : T rsM → M that takes a point q = (p,T) of T rsM to the point
p ∈ M is called the canonical projection of the tensor bundle T rsM onto the base
manifold M . Like in (2.1) and (2.3), we can specify the set of variables associated
with a point q = (p,T) of the tensor bundle T rsM and with a local chart U ⊂M :

x1, . . . , xn, T 1 ... 1
1 ... 1 , . . . , T

n ... n
n ... n . (2.5)

The number of variables in (2.5) determines the dimension dim(T rsM) = n+ nr+s

of the tensor bundle T rsM . Note that if we consider a tensor field T, its components

T i1... irj1... js
= T i1... irj1... js

(x1, . . . , xn) are functions of x1, . . . , xn, while T i1... irj1... js
in (2.5) are

independent variables. For another chart Ũ ⊂M we have the other set of variables

x̃1, . . . , x̃n, T̃ 1 ... 1
1 ... 1 , . . . , T̃

n ... n
n ... n . (2.6)

If the charts U and Ũ are overlapping, then we can write the transition functions





x̃1 = x̃1(x1, . . . , xn),

. . . . . . . . . . . . . . .

x̃n = x̃n(x1, . . . , xn),

T̃ i1... irj1... js
=

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
T h1... hr

k1... ks
,

(2.7)

where the transition matrices T and S are the same as in (1.13) — they are deter-
mined by (1.2). Here are the inverse transition functions relating (2.5) and (2.6):





x1 = x1(x̃1, . . . , x̃n),

. . . . . . . . . . . . . . .

xn = xn(x̃1, . . . , x̃n),

T i1... irj1... js
=

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
T̃ h1... hr

k1... ks
.

(2.8)

The transformations (2.7) and (2.8) play the same role for the tensor bundle T rsM
as the transformations (1.1) for the base manifold M . Note that they are linear

with respect to T h1... hr

k1... ks
and T̃ h1... hr

k1... ks
, but they are nonlinear with respect to the

base variables x1, . . . , xn and x̃1, . . . , x̃n.
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3. Composite tensor bundles.

Suppose that we have several tensor bundles over the same base manifold M .
Let’s denote them T r1s1M, . . . , T

rQ
sQM and consider their direct sum over M :

T r1... rQ
s1... sQ

M = T r1s1M ⊕ . . .⊕ T rQ
sQ
M (3.1)

(see the definition of a direct sum in [31]). We shall call (3.1) the composite tensor
bundle. A point q of the composite tensor bundle (3.1) is a list

q = (p, T[1], . . . , T[Q]), (3.2)

where p is a point of the base M and T[1], . . . , T[Q] are some tensors of the types
(r1, s1), . . . , (rQ, sQ) at the point p. The canonical projection

π : T r1... rQ
s1... sQ

M →M

is defined as a map that takes a point q of the form (3.2) to the point p ∈ M . If
a local chart U in the base manifold M is given, a point q ∈ T

r1... rQ
s1... sQM such that

π(q) ∈ U is represented by the following set of variables:

x1, . . . , xn, T 1 ... 1
1 ... 1 [1], . . . , T n ... nn ... n [1], . . . , T 1 ... 1

1 ... 1 [Q], . . . , T n ... nn ... n [Q]. (3.3)

Taking another chart Ũ , we get the other set of variables

x̃1, . . . , x̃n, T̃ 1 ... 1
1 ... 1 [1], . . . , T̃ n ... nn ... n [1], . . . , T̃ 1 ... 1

1 ... 1 [Q], . . . , T̃ n ... nn ... n [Q]. (3.4)

If these charts are overlapping, then we have a system of transition functions





x̃1 = x̃1(x1, . . . , xn),

. . . . . . . . . . . . . . .

x̃n = x̃n(x1, . . . , xn),

T̃ i1... irj1... js
[P ] =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
T h1... hr

k1... ks
[P ],

(3.5)

where r = rP , s = sP , and the integer number P runs from 1 to Q. Similarly, we
can write the system of the inverse transition functions for (3.5):





x1 = x1(x̃1, . . . , x̃n),

. . . . . . . . . . . . . . .

xn = xn(x̃1, . . . , x̃n),

T i1... irj1... js
[P ] =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
T̃ h1... hr

k1... ks
[P ].

(3.6)

Here again r = rP , s = sP , and P runs from 1 to Q. The formulas (3.5) and (3.6)
generalize (2.7) and (2.8) for the case of composite tensor bundles. They relate two
sets of variables (3.3) and (3.4).
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The composite tensor bundle N = T
r1... rQ
s1... sQM is a manifold (like M itself) and

(3.3) are the local coordinates of its point q in some local chart. Therefore, one can
consider the tangent space Tq(N). By analogy to (1.5) it is defined as the span of
all partial derivatives with respect to the variables (3.3). Let’s denote them

Ui =
∂

∂xi
, V

j1... js
i1... ir

[P ] =
∂

∂T i1... irj1... js
[P ]

, (3.7)

where r = rP , s = sP and P runs from 1 to Q. Note that Ui in (3.7) are different
from Ei in (1.3). Passing from (3.3) to another set of local coordinates (3.4), one
should define the other set of partial derivatives spanning the tangent space Tq(N):

Ũi =
∂

∂x̃i
, Ṽ

j1... js
i1... ir

[P ] =
∂

∂T̃ i1... irj1... js
[P ]

. (3.8)

From (3.4) and (3.5) one easily derives the transformations formulas





Ṽ
j1... js
i1... ir

[P ] =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Sh1

i1
. . . Shr

ir
T
j1
k1
. . . T

js
ks

Vk1... ks

h1... hr
[P ],

Ũj =

n∑

i=1

Sij Ui +

Q∑

P=1

n∑
...

n∑

i1, ... , ir
j1, ... , js

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
×

×

(
r∑

m=1

n∑

vm=1

(
n∑

h=1

T hm

h

∂Shvm

∂x̃j

)
T̃ h1... vm... hr

k1... ... ... ks
[P ] +

+

s∑

m=1

n∑

wm=1

(
n∑

h=1

∂Twm

h

∂x̃j
Shkm

)
T̃ h1... ... ... hr

k1... wm... ks
[P ]

)
V
j1... js
i1... ir

[P ].

(3.9)

The transformation formulas (3.9) express the tangent vectors (3.8) through the
tangent vectors (3.7) in Tq(N). In order to simplify these formulas we introduce
the following θ-parameters defined through the transition matrices (1.2):

θ̃kij =
n∑

h=1

T kh
∂Shj

∂x̃i
=

n∑

h=1

T kh
∂xh

∂x̃i ∂x̃j
. (3.10)

Looking at the right hand side of (3.10), we see that θ̃kij are symmetric:

θ̃kij = θ̃kj i.

Moreover, note that S and T are inverse to each other. From this fact we derive

0 =
∂δkj

∂x̃i
=

∂

∂x̃i

(
n∑

h=1

T kh S
h
j

)
=

n∑

h=1

T kh
∂Shj

∂x̃j
+

n∑

h=1

∂T kh
∂x̃i

Shj . (3.11)
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Now, comparing (3.10) and (3.11), we find that θ̃kij can also be defined as

θ̃kij = −

n∑

h=1

∂T kh
∂x̃i

Shj . (3.12)

Applying (3.10) and (3.12) to the formula (3.9), we can simplify it as follows:





Ṽ
j1... js
i1... ir

[P ] =
n∑
...

n∑

h1, ... , hr

k1, ... , ks

Sh1

i1
. . . Shr

ir
T
j1
k1
. . . T

js
ks

Vk1... ks

h1... hr
[P ],

Ũj =
n∑

i=1

Sij Ui +

Q∑

P=1

n∑
...

n∑

i1, ... , ir
j1, ... , js

n∑
...

n∑

h1, ... , hr

k1, ... , ks

(
r∑

m=1

n∑

vm=1

θ̃hm

j vm
×

× T̃ h1... vm... hr

k1... ... ... ks
[P ] −

s∑

m=1

n∑

wm=1

θ̃wm

j km
T̃ h1... ... ... hr

k1... wm... ks
[P ]

)
×

× Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
V
j1... js
i1... ir

[P ].

(3.13)

The inverse transformation formulas expressing the tangent vectors (3.7) trough
(3.8) are written by analogy to (3.13). They look like






V
j1... js
i1... ir

[P ] =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T h1

i1
. . . T hr

ir
S
j1
k1
. . . S

js
ks

Ṽk1... ks

h1... hr
[P ],

Uj =

n∑

i=1

T ij Ũi +

Q∑

P=1

n∑
...

n∑

i1, ... , ir
j1, ... , js

n∑
...

n∑

h1, ... , hr

k1, ... , ks

(
r∑

m=1

n∑

vm=1

θhm

j vm
×

× T h1... vm... hr

k1... ... ... ks
[P ] −

s∑

m=1

n∑

wm=1

θwm

j km
T h1... ... ... hr

k1... wm... ks
[P ]

)
×

× T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
Ṽ
j1... js
i1... ir

[P ].

(3.14)

The θ-parameters in (3.14) are defined by analogy to (3.10) and (3.12):

θkij =

n∑

h=1

Skh
∂T hj

∂xi
=

n∑

h=1

Skh
∂x̃h

∂xi ∂xj
= −

n∑

h=1

∂Skh
∂xi

T hj . (3.15)

Moreover, we easily derive the following two formulas:

θkij = −

n∑

h=1

n∑

p=1

n∑

q=1

θ̃hp qS
k
h T

p
i T

q
j , (3.16)

θ̃kij = −

n∑

h=1

n∑

p=1

n∑

q=1

θhp qT
k
h S

p
i S

q
j . (3.17)
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The formulas (3.16) and (3.17) relate the θ-parameters given by the formula (3.14)
with those given by the formulas (3.10) and (3.12).

4. Extended tensor fields.

Definition 4.1. Let N = T
r1... rQ
s1... sQM be a composite tensor bundle over a smooth

real manifold M . An extended tensor field X of the type (α, β) is a tensor-valued
function in N = T

r1... rQ
s1... sQM such that it takes each point q ∈ N to some tensor

X(q) ∈ Tαβ (p,M), where p = π(q) is the projection of q.

Informally speaking, an extended tensor field X is a tensorial function with one
point argument p ∈M and Q tensorial arguments T[1], . . . , T[Q]. In a local chart

U ⊂M it is represented by its componentsX i1... iα
j1... jβ

each of which is a function of the

variables (3.3). When passing from U to an overlapping chart Ũ the components of
an extended tensor field are transformed according to the standard formula (1.13),
while their arguments are transformed according to the formula (3.5). Tensor bun-
dles, which we considered above, are used to realize these arguments geometrically
in a coordinate-free form.

The term «extended tensor field» was first introduced in [11] in order to describe
the force field of a Newtonian dynamical system. Indeed, writing the Newton’s
second law for a point mass m a = F(r,v), where v = ṙ is its velocity and a = r̈

is its acceleration, we encounter a vector-function F with two arguments r and
v. The first argument represents a point of the 3-dimensional space E, while the
second argument is a vector attached to that point. So, both they form a point
of the tangent bundle TE. The standard 3-dimensional Euclidean space E is a
very simple thing, its tangent bundle TE can be treated as a 6-dimensional space
parametrized by pairs of 3-dimensional vectors. However, even in this trivial case,
choosing curvilinear coordinates in E, we find that the vectors r and v are slightly
different in their nature.

Another place, where we find extended tensor fields with the arguments in a
tangent bundle TM , is the geometry of Finsler (see [32]). Here the metric tensor g

depends on the velocity vector v. Some generalizations of the Finslerian geometry
motivated by the Lagrangian dynamics were suggested in [27] and [28]. A different
approach to understanding extended tensor fields with the arguments in a tangent
bundle TM was used in [33].

Extended tensor fields with the arguments in a cotangent bundle T ∗M are natural
in Hamiltonian mechanics. Indeed, if a Hamiltonian dynamical system is produced
from a Lagrangian dynamical system, its Hamilton function H depends on a point
of its configuration space M and on a momentum covector p at this point.

More complicated extended tensor fields can be found in physics of continuous
media and in field theories. For example, in [34] we find that the specific free

energy function f(T, Ĝ) depends on the temperature T and the elastic part of the
deformation tensor. Such a function should certainly be treated as an extended
scalar field with the arguments in N = T 00

02 E since the temperature T is a scalar

field and Ĝ is a tensor field of the type (0, 2).

5. The algebra of extended tensor fields.

Suppose that some composite tensor bundle T
r1... rQ
s1... sQM is fixed. Let’s denote by

Tαβ (M) the set of all extended tensor fields of the type (α, β). According to the
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above definition 4.1 an extended tensor field is a function, its values are tensors.
Hence, we can perform the algebraic operations with these values and thus define
the algebraic operations with extended tensor fields:

(1) Tαβ (M) + Tαβ (M) −→ Tαβ (M);

(2) T 0
0 (M) ⊗ Tαβ (M) −→ Tαβ (M);

(3) Tαβ (M) ⊗ T σµ (M) −→ Tα+σ
β+µ (M);

According to the definition 4.1, each extended scalar field is a real-valued function
in the bundle N . Such functions form a ring, we denote it F(N). Then

T 0
0 (M) = F(N). (5.1)

Due to the properties (1) and (2) the set of extended tensor fields Tαβ (M) of the

fixed type (α, β) is a module over the ring (5.1).
In general, one cannot add tensor fields of two different types (α, β) 6= (σ, µ).

However, one can consider formal sums

X = X[1] + X[2] + . . .+ X[K], (5.2)

where X[1], . . . , X[K] are taken from various modules Tαβ (M) over the ring F(N).

By definition, the set of all sums (5.2) is called the direct sum

T(M) =

∞⊕

α=0

∞⊕

β=0

Tαβ (M). (5.3)

With respect to the algebraic operations (1), (2), and (3) the direct sum (5.3) is a
graded algebra over the ring T 0

0 (M). This algebra is called the algebra of extended
tensor fields (or the extended algebra for short).

The fourth class of algebraic operations in the extended algebra (5.3) is formed
by the operations of contraction. They are performed with respect to some pair of
indices one of which is an upper index and the other is a lower index (see details
in [1] and [2]). For the sake of simplicity we denote these operations as follows:

(4) C : Tαβ (M) −→ Tα−1
β−1 (M) for α > 1 and β > 1.

As it follows from the property (4), the contraction operations are concordant with
the structure of graded algebra in T(M). The same is true for the operations of
addition and tensor multiplication.

6. Differentiation of tensor fields.

Definition 6.1. An extended tensor field X of the type (α, β) associated with a

composite tensor bundle N = T
r1... rQ
s1... sQM is called smooth if its components X i1... iα

j1... jβ

are smooth function of their arguments (3.3) for any local chart U of M .

From now on we shall restrict our previous definition (5.3) of the extended algebra
and denote by T(M) the algebra of smooth extended tensor fields. Similarly, by
F(N) below we denote the ring of smooth scalar functions in N . Then the equality
(5.1) remains valid. The basic idea of considering smooth smooth extended tensor
fields is to introduce the operation of differentiation in addition to the above four
algebraic operations in T(M).
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Definition 6.2. A mapping D : T(M) → T(M) is called a differentiation of the
extended algebra of tensor fields if the following conditions are fulfilled:

(1) D is concordant with the grading: D(Tαβ (M)) ⊂ Tαβ (M);

(2) D is R-linear: D(X + Y) = D(X) +D(Y)
and D(λX) = λD(X) for λ ∈ R;

(3) D commutates with the contractions: D(C(X)) = C(D(X));
(4) D obeys the Leibniz rule: D(X ⊗ Y) = D(X) ⊗ Y + X⊗D(Y).

Let’s consider the set of all differentiations of the extended algebra T(M). We
denote it D(M). It is easy to check up that

(1) the sum of two differentiations is a differentiation of the algebra T(M);
(2) the product of a differentiation by a smooth function in N is a differentiation

of the algebra T(M).

Now we see that D(M) is equipped with the structure of a module over the ring of
smooth functions F(N) = T 0

0 (M). The composition of two differentiations D1 and
D2 is not a differentiation, but their commutator

[D1, D2] = D1 ◦D2 −D2 ◦D1 (6.1)

is a differentiation. Therefore, D(M) is a Lie algebra. Note, however, that D(M)
is not a Lie algebra over the ring of smooth functions F(N). It is only a Lie algebra
over the field of real numbers R. For this reason the structure of Lie algebra in
D(M) is not of a primordial importance.

7. Localization.

Smooth extended tensor fields are global objects related to the tensor bundle
N in whole, but they are functions — their values are local objects so that two
different tensor fields A 6= B can take the same values at some particular points.
Whenever this happens, we write Aq = Bq, where q ∈ N .

Differentiations of the algebra T(M), as they are introduced in the definition 6.2,
are global objects without any explicit subdivision into parts related to separate
points of the bundle N . Below in this section we shall show that they also can be
represented as functions taking their values in some linear spaces associated with
separate points of the manifoldN . LetD ∈ D(M) be a differentiation of the algebra
of extended tensor fields T(M). Let’s denote by δ the restriction of the mapping
D : T(M) → T(M) to the module T 0

0 (M) of extended scalar fields in (5.3):

δ : T 0
0 (M) → T 0

0 (M). (7.1)

Since T 0
0 (M) = F(M), the mapping δ in (7.1) is a differentiation of the ring of

smooth functions in N . It is known (see § 1 in Chapter I of [35]) that any differenti-
ation of the ring of smooth functions of an arbitrary smooth manifold is determined
by some vector field Z in this manifold. Applying this fact to N , we get

δ = Z =

n∑

i=1

Zi Ui +

Q∑

P=1

n∑
...

n∑

i1, ... , ir
j1, ... , js

Zi1... irj1... js
[P ] V

j1... js
i1... ir

[P ], (7.2)
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where Ui and V
j1... js
i1... ir

[P ] are the differential operators (3.7). From the representa-
tion (7.2) for the mapping (7.1) we immediately derive the following lemma.

Lemma 7.1. Let ψ ∈ T 0
0 (M) = F(N) an extended scalar field (a smooth function)

identically constant within some open subset O ⊂ N and let ϕ = D(ψ) for some
differentiation D ∈ D(M). Then ϕ = 0 within the open set O.

Proof. SinceD(ψ) = δ(ψ), choosing some local chart U and applying the differential
operators (3.7) to a constant, from (7.2) we derive that δ(ψ) = Zψ = 0 at any point
q of the open set O. �

Lemma 7.2. Let X be an extended tensor field of the type (α, β). If X ≡ 0, then
D(X) is also identically equal to zero for any differentiation D ∈ D(M).

The proof is trivial. Since X ≡ 0, we can write X = λX with λ 6= 1. Then,
applying the item (2) of the definition 6.2, we get D(X) = λD(X). Since λ 6= 1,
this yields the required equality D(X) ≡ 0.

Lemma 7.3. Let X be an extended tensor field of the type (α, β) identically zero
within some open set O ⊂ N . If Y = D(X) for some differentiation D ∈ D(M),
then Yq = 0 at any point q ∈ O.

Proof. Let’s choose some arbitrary point q ∈ O and take some smooth scalar func-
tion η ∈ F(N) such that it is identically equal to the unity in some open neighbor-
hood O ′ ⊂ O of the point q and identically equal to zero outside the open set O.
The existence of such a function η is easily proved by choosing some local chart U
that covers the point q. The product ηX is identically equal to zero:

η ⊗ X = ηX ≡ 0. (7.3)

Applying the differentiation D to (7.3), then taking into account the lemma 7.2
and the item (4) of the definition 6.2, we obtain

0 = D(0) = D(η ⊗ X) = D(η) ⊗ X + η ⊗D(X) = D(η)X + η D(X).

Note that D(η) = 0 at the point q due to the lemma 7.1. Moreover, Xq = 0 and
η = 1 at the point q. Therefore, by specifying the above equality to the point q we
get D(X) = 0 at the point q. The lemma is proved. �

Lemma 7.4. If two extended tensor fields X and Y are equal within some open
neighborhood O of a point q ∈ N , then for any differentiation D ∈ D(M) their
images D(X) and D(Y) are equal at the point q.

The lemma 7.4 follows immediately from the lemma 7.3. This lemma is a basic
tool for our purposes of localization in this section.

Let q be some point of N and let π(q) be its projection in the base manifold M .
Taking some local chart U that covers the point p in M , we can use its preimage
π−1(U) as a local chart in N covering the point q. The variables (3.3) form the
complete set of local coordinates in the chart π−1(U). Any extended tensor field
X of the type (α, β) is represented by the formula

X =

n∑

i1=1

. . .

n∑

iα=1

n∑

j1=1

. . .

n∑

jβ=1

X i1... iα
j1... jβ

E
j1... jβ
i1... iα

, (7.4)
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which is identical to (1.11). The only difference is that the coefficients X i1... iα
j1... jβ

in

(7.4) depend not only on x1, . . . , xn, but on the whole set of variables (3.3). Taking
some differentiation D ∈ D(M), we can apply it to the left hand side of the equality
(7.4), but we cannot apply it to each summand in the right hand side of (7.4). The

matter is that the scalars X i1... iα
j1... jβ

and the tensors E
j1... jβ
i1... iα

are defined locally only

within the chart π−1(U), therefore they do not fit the definition 4.1. In order to
convert them to global fields we choose some smooth function η ∈ F(N) such that
it is identically equal to the unity within some open neighborhood of the point q
and is identically zero outside the chart π−1(U). Let’s define

X̂ i1... iα
j1... jβ

=

{
η X i1... iα

j1... jβ
within π−1(U),

0 outside π−1(U),
(7.5)

Êi =

{
η Ei within π−1(U),

0 outside π−1(U),
(7.6)

ĥi =

{
η dxi within π−1(U),

0 outside π−1(U).
(7.7)

Then by analogy to (1.10) we write

Ê
j1... jβ
i1... iα

= Êi1 ⊗ . . .⊗ Êiα ⊗ ĥj1 ⊗ . . .⊗ ĥjβ . (7.8)

Taking into account (7.5), (7.6), (7.7), and (7.8), from (7.4) we derive

ηm X =

n∑

i1=1

. . .

n∑

iα=1

n∑

j1=1

. . .

n∑

jβ=1

X̂ i1... iα
j1... jβ

Ê
j1... jβ
i1... iα

, (7.9)

where m = α + β + 1. Now we can apply D to each summand in the right hand
side of the equality (7.9). Using the item (4) of the definition 6.2, we get

D(ηm X) =
n∑

i1=1

. . .

n∑

iα=1

n∑

j1=1

. . .

n∑

jβ=1

D(X̂ i1... iα
j1... jβ

) Ê
j1... jβ
i1... iα

+

+

n∑

i1=1

. . .

n∑

iα=1

n∑

j1=1

. . .

n∑

jβ=1

X̂ i1... iα
j1... jβ

D(Ê
j1... jβ
i1... iα

).

(7.10)

Due to the lemma 7.4 we have D(ηm X) = D(X) at the point q. Moreover, due

to (7.5), (7.6), (7.7), (7.8) and since η(q) = 1, we have Ê
j1... jβ
i1... iα

= E
j1... jβ
i1... iα

and

X̂ i1... iα
j1... jβ

= X i1... iα
j1... jβ

at this point. As for the fields D(X̂ i1... iα
j1... jβ

) and D(Ê
j1... jβ
i1... iα

) in

(7.10), again due to the lemma 7.4 their values at the point q do not depend on

a particular choice of the function η. Since D(X̂ i1... iα
j1... jβ

) = δ(X̂ i1... iα
j1... jβ

), from the

formulas (7.2) and (3.7) for the value of D(X̂ i1... iα
j1... jβ

) at the point q we derive

D(X̂ i1... ir
j1... js

) =

n∑

i=1

Zi
∂X i1... iα

j1... jβ

∂xi
+

Q∑

P=1

Zi1... irj1... js
[P ]

∂X i1... iα
j1... jβ

∂T i1... irj1... js
[P ]

. (7.11)
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In order to evaluate D(Ê
j1... jβ
i1... iα

) at the point q let’s apply D to (7.8). Using the
item (4) of the definition 6.2, we obtain the following equality:

D(Ê
j1... jβ
i1... iα

) =

α∑

v=1

Ei1 ⊗ . . .⊗D( Êiv ) ⊗ . . .⊗ Eiα⊗

⊗ dxj1 ⊗ . . .⊗ dxjβ +

β∑

w=1

Ei1 ⊗ . . .⊗ Eiα⊗

⊗ dxj1 ⊗ . . .⊗D( ĥjw) ⊗ . . .⊗ dxjβ .

(7.12)

Summarizing the above three formulas (7.10), (7.11), (7.12), and the equality
D(ηm X) = D(X), we can formulate the following lemma.

Lemma 7.5. Any differentiation D ∈ D(M) is uniquely fixed by its restrictions to
the modules T 0

0 (M), T 1
0 (M), T 0

1 (M) in the direct sum (5.3).

The value of the extended vector field D(Êi) at the the point q is a vector of the
tangent space Tπ(q)(M). We can write the following expansion for this vector:

D(Êi) =

n∑

k=1

Γki Ek. (7.13)

Due to the lemma 7.4 the left hand side of the equality (7.13) does not depend
on a particular choice of the function η in (7.6). Therefore, the coefficients Γki in
(7.13) represent the differentiation D at the point q for a given local chart U in M .

The same is true for Zi and Zi1... irj1... js
[P ] in (7.11). Being dependent on q, all these

coefficients Zi, Zi1... irj1... js
[P ], and Γki are some smooth functions of the variables (3.3).

However, if q is fixed, they all are constants.
Under a change of a local chart the coefficients Zi, Zi1... irj1... js

[P ], and Γki obey some

definite transformation rules. The transformation rules for Zi and Zi1... irj1... js
[P ] are

derived from the formulas (3.13), (3.14), and (7.2):






Zi =

n∑

j=1

Sij Z̃
j,

Zi1... irj1... js
[P ] =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
Z̃h1... hr

k1... ks
[P ] −

−
r∑

m=1

n∑

i=1

n∑

j=1

n∑

vm=1

θimi vm
T i1... vm... ir
j1... ... ... js

[P ] Sij Z̃
j +

+
s∑

m=1

n∑

i=1

n∑

j=1

n∑

wm=1

θwm

i jm
T i1... ... ... ir
j1... wm... js

[P ] Sij Z̃
j .

(7.14)

Here the components of the direct and inverse transition matrices S and T are
taken from (1.2), while the θ-parameters are given by the formulas (3.15). The
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transformation formulas (7.14) can be inverted in the following way:






Z̃i =

n∑

j=1

T ij Z
j ,

Z̃ i1... ir
j1... js

[P ] =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
Zh1... hr

k1... ks
[P ] −

−
r∑

m=1

n∑

i=1

n∑

j=1

n∑

vm=1

θ̃imi vm
T̃ i1... vm... ir
j1... ... ... js

[P ] T ij Z
j +

+

s∑

m=1

n∑

i=1

n∑

j=1

n∑

wm=1

θ̃wm

i jm
T̃ i1... ... ... ir
j1... wm... js

[P ] T ij Z
j.

(7.15)

The θ-parameters for (7.15) are taken from (3.10) or from (3.12). The transforma-
tion formulas (7.14) and (7.15) should be completed with the analogous formulas
for the coefficients Γki in the expansion (7.13):

Γki =
n∑

b=1

n∑

a=1

Ska T
b
i Γ̃ab +

n∑

a=1

Za θkai, (7.16)

Γ̃ki =

n∑

b=1

n∑

a=1

T ka S
b
i Γab +

n∑

a=1

Z̃a θ̃kai. (7.17)

The formula (7.16) is derived immediately from (7.13) and (1.4), taking into account
(3.15). The formula (7.17) then is written by analogy.

Let’s return back to (7.12). In order to calculate D( ĥj) in this formula we need
to remember (1.9). This equality can be written as follows:

C(dxi ⊗ Ej) = δij . (7.18)

Multiplying the equality (7.18) by η2, we transform it to the following one:

C (̂hi ⊗ Êj) = δij η
2. (7.19)

Here η is the same function as in (7.6) and (7.7). Now one can apply the differentia-
tion D to both sides of (7.19). Taking into account the item (3) in the definition 6.2
and taking into account the lemma 7.4, at the fixed point q we obtain

C(D(̂hi) ⊗ Êj) + C (̂hi ⊗D(Êj)) = D(δij η
2) = 0. (7.20)

Since η = 1 at the point q, from (7.13), (7.19), and (7.20) we derive

C(D(̂hi) ⊗ Êj) = −

n∑

k=1

Γkj C (̂hi ⊗ Êk) = −Γij. (7.21)

By the definition of a differentiation the value of D(̂hi) at the point q is a covector
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from the cotangent space T ∗

q (M). One can expand it in the basis of differentials

dx1, . . . , dxn. Due to (7.21) this expansion looks like

D(̂hi) = −

n∑

j=1

Γij dx
j . (7.22)

The formula (7.22) means that we can strengthen the lemma 7.5 as follows.

Theorem 7.1. Any differentiation D ∈ D(M) is uniquely fixed by its restrictions
to the modules T 0

0 (M), T 1
0 (M) in the direct sum (5.3).

Indeed, let’s denote by ξ and ζ the restrictions of the differentiation D to the
modules T 1

0 (M) and T 0
1 (M) respectively. Its restriction to the module T 0

0 (M) was
already considered. It was denoted by δ (see formula (7.1) above):

ξ : T 1
0 (M) → T 1

0 (M), (7.23)

ζ : T 0
1 (M) → T 0

1 (M). (7.24)

The formulas (7.13) and (7.22) mean that the mapping (7.24) is completely deter-
mined if the mapping (7.23) is known. Hence, D is completely determined by the
mappings δ and ξ. Then, using (7.10), (7.11), and (7.12), one can reconstruct the
mapping D itself. Let Y = D(X) and assume that X is given by the formula (7.4)
in local coordinates. Then Y is given by a similar expansion

Y =

n∑

i1=1

. . .

n∑

iα=1

n∑

j1=1

. . .

n∑

jβ=1

Y i1... iαj1... jβ
E
j1... jβ
i1... iα

, (7.25)

where its components Y i1... iαj1... jβ
are calculated as follows:

Y i1... iαj1... jβ
=

n∑

i=1

Zi
∂X i1... iα

j1... jβ

∂xi
+

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Zh1... hr

k1... ks
[P ]

∂X i1... iα
j1... jβ

∂T h1... hr

k1... ks
[P ]

+

+

α∑

m=1

n∑

vm=1

Γimvm
X i1... vm... iα
j1... ... ... jβ

−

β∑

m=1

n∑

wm=1

Γwm

jm
X i1... ... ... iα
j1... wm... jβ

.

(7.26)

The formulas (7.25) and (7.26) prove the theorem 7.1. As for the mappings (7.23)
and (7.24), one can formulate the following theorem for them.

Theorem 7.2. Defining a differentiation D of the algebra of extended tensor fields
T(M) is equivalent to defining two R-linear mappings (7.23) and (7.24) such that

δ(ϕψ) = δ(ϕ)ψ + ϕ δ(ψ) for any ϕ, ψ ∈ F(N) = T 0
0 (M), (7.27)

ξ(ϕX) = δ(ϕ) X + ϕ ξ(X) for any ϕ ∈ F(N) and X ∈ T 1
0 (M). (7.28)

The formula (7.27) is immediate from the definition 6.2. It means that δ is a
differentiation of the ring F(N). This fact was used for writing (7.2). The formula
(7.28) is also immediate from the definition 6.2.

Looking at the formula (7.26), we see that the differentiation D acts as a first
order linear differential operator upon the components of a tensor field X. The
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coefficients Zi, Zh1... hr

k1... ks
[P ], Γki of this linear operator are not differentiated in (7.26).

Therefore, fixing some point q ∈ N and taking the values of the coefficients Zi,
Zh1... hr

k1... ks
[P ], Γki , we can say that we know this linear operator at that particular

point q. In order to formalize this idea we need a coordinate-free definition of a
first order linear differential operator at a point q acting upon tensors.

Definition 7.1. Two smooth extended tensor fields X1 and X2 defined in some
open neighborhoods O1 and O2 of a point q ∈ N are called q-equivalent if they take
the same values within some smaller neighborhood O ⊂ O1 ∩ ∨2 of the point q.

Definition 7.2. A class of q-equivalent smooth extended tensor fields is called a
stalk of a smooth extended tensor field at the point q.

The stalks of various extended tensor fields at a fixed point q ∈ N form a graded
algebra over the real numbers R (compare to (5.3) above):

T(q,M) =

∞⊕

α=0

∞⊕

β=0

Tαβ(q,M). (7.29)

Each summand Tαβ(q,M) in (7.29) is a linear space over R. It is composed by stalks

of extended tensor fields of some fixed type (α, β).
A stalk of a tensor field is somewhat like its value at a fixed point q. However,

they do not coincide since the stalk comprises much more information:

Tαβ(q,M) 6= Tαβ (q,M).

Informally speaking, a stalk is the restriction of a tensor field to the infinitesimal
neighborhood of a point q. The information stored in a stalk of a tensor field is
sufficient for to apply a differential operator to it. As a result we get a tensor (not
a stalk) at a fixed point.

Definition 7.3. A tensorial first order differential operator Dq at a point q ∈ N

is a mapping Dq : T(q,M) → T (q,M) such that

(1) Dq is concordant with the grading: Dq(T
α
β(q,M)) ⊂ Tαβ (q,M);

(2) Dq is R-linear: Dq(X + Y) = Dq(X) +Dq(Y)
and Dq(λX) = λDq(X) for λ ∈ R;

(3) Dq commutates with the contractions: Dq(C(X)) = C(Dq(X));
(4) Dq obeys the Leibniz rule: Dq(X ⊗ Y) = Dq(X) ⊗ Yq + Xq ⊗Dq(Y).

The formulas (7.25) and (7.26) yield the representation of a tensorial differential
operator in a local chart. In the case of a differential operatorDq the coefficients Zi,

Zh1... hr

k1... ks
[P ], Γki are constants related to a point q. They are called the components

of Dq. The operators Dq at a fixed point q form a finite-dimensional linear space,
we denote it D(q,M). The lemma 7.4 provides the following result.

Theorem 7.3. Any differentiation D of the algebra of extended tensor fields T(M)
is represented as a field of differential operators Dq ∈ D(q,M), one per each point
q ∈ N . Conversely, each smooth field of tensorial first order differential operators
is a differentiation of the algebra T(M).

The theorem 7.3 solves the problem of localization announced in the very be-
ginning of this section. Relying on this theorem, one can formulate the following
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definition for a differentiation of the algebra of extended tensor fields T(M).

Definition 7.4. Let N = T
r1... rQ
s1... sQM be a composite tensor bundle over a smooth

real manifold M . A differentiation D of the algebra T(M) is a smooth operator-
valued function in N such that it takes each point q ∈ N to some differential
operator Dq ∈ D(q,M).

Smoothness in both cases — in theorem 7.3 and in definition 7.4 means that the
components Zi, Zh1... hr

k1... ks
[P ], Γki of the differential operator Dq are smooth functions

of the variables (3.3) in any local chart.

Let’s compare the definitions 7.4 and 4.1. They are very similar. Therefore, by
analogy to the definition 1.3, one can formulate the following definition.

Definition 7.5. A differentiation D of the algebra T(M) is a geometric object in

each local chart represented by its components Zi, Zh1... hr

k1... ks
[P ], Γki and such that

its components are smooth functions transformed according to the formulas (7.14),
(7.15), (7.16), and (7.17) under a change of local coordinates.

The definition 7.5 is a coordinate form of the definition 7.4, and conversely, the
definition 7.4 is a coordinate-free form of the definition 7.5.

8. Degenerate differentiations.

Definition 8.1. A differentiation D of the algebra of extended tensor fields T(M)
is called a degenerate differentiation if its restriction δ : T 0

0 (M) → T 0
0 (M) to the

module T 0
0 (M) is identically zero.

For a degenerate differentiation the corresponding vector field (7.2) is identically
equal to zero. Then the equality (7.27) is obviously fulfilled, while the equality
(7.28) is reduced to the following one:

ξ(ϕX) = ϕ ξ(X). (8.1)

From the equality (8.1) we conclude that the map ξ : T 1
0 (M) → T 1

0 (M) is an
endomorphism of the module T 1

0 (M) over the ring F(N).

Definition 8.2. Let A be a module over the ring of smooth real-valued functions
F(M) in some manifold M . We say that the module A admits a localization if it
is isomorphic to a functional module so that each element a ∈ A is represented
as some function a(q) = aq in M taking its values in some R-linear spaces Aq
associated with each point q of the manifold M .

Definition 8.3. Let A be a module that admits a localization in the sense of the
definition 8.2. We say that the localization of A is a complete localization if the
following two conditions are fulfilled:

(1) for any point q ∈M and for any vector v ∈ Aq there exists an element a ∈ A

such that aq = v;
(2) if aq = 0 at some point q ∈ M , then there exist some finite set of elements

E0, . . . , En in A and some smooth functions α0 . . . , αn vanishing at the point
q such that a = α0 E0 + . . .+ αnEn.
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Theorem 8.1. Let A and B be two F(M)-modules that admit localizations. If the
localization of A is a complete localization, then each homomorphism f : A→ B is
represented by a family of R-linear mappings

Fq : Aq → Bq (8.2)

so that if a ∈ A and b = f(a), then bq = Fq(aq) for each point q ∈M .

Proof. First of all we should construct the mappings (8.2). Let q be some arbitrary
point of the manifold M and let v be some arbitrary vector of the R-linear space
Aq. Then, according to the item (1) of the definition 8.3, we have an element a ∈ A

such that v = aq. Applying the homomorphism f to a we get b = f(a) ∈ B. Let’s
define the mapping (8.2) as follows:

Fq(v) = bq, where b = f(a) for some a ∈ A such that v = aq. (8.3)

The choice of an element a ∈ A such that v = aq is not unique. Therefore, one
should prove the consistence of the definition (8.3). Suppose that a and ã are two
elements of the module A such that v = aq and v = ãq . Then for the element
c = a − ã we get cq = 0. Applying the item (2) of the definition 8.3 to c, we get

c = α0 E0 + . . .+ αnEn, (8.4)

where α0, . . . , αn are smooth functions vanishing at the point q ∈ M . Applying
the homomorphism f to (8.4), we derive

d = f(a) − f(ã) = f(c) = α0 f(E0) + . . .+ αn f(En). (8.5)

Since α0(q) = . . . = αn(q) = 0, from (8.5) we obtain dq = 0. This means that two

elements b = f(a) and b̃ = f(ã) determine the same vector bq = b̃q in (8.3). So,
(8.3) is a consistent definition of a mapping Fq : Aq → Bq.

The mapping Fq : Aq → Bq consistently defined by the equality (8.3) is R-linear.
This fact is a trivial consequence of the equalities

f(a1 + a2) = f(a1) + f(a2) for any a1,a2 ∈ A,

f(λa) = λ f(a) for any a2 ∈ A and λ ∈ F(M),

which mean that f is a homomorphism of F(M)-modules. And finally, from the
equality (8.3) it follows that for any a ∈ A its image b = f(a) is represented by a
function b whose values are obtained by applying the mappings (8.2) to the values
of a. The theorem is proved. �

Theorem 8.2. Let π : VM → M be a smooth n-dimensional vector bundle over
some base manifold M and let A be the set of all global smooth sections1 of this
bundle. Then A admits complete localization in the sense of the definition 8.3.

Proof. The module structure of A and its localization are obvious. By definition,
each section a of the bundle π : VM → M is a function taking its values in fibers
Vq = π−1(q) of the bundle VM . We need to prove that this natural localization of

1 See the definition in [31].
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A is complete. Let’s begin with the item (1) in the definition 8.3. Let q be some
fixed point of the base manifold M and let v be some vector in the fiber Vq over
this point. Each vector bundle is locally trivial. This means that there is some
open neighborhood U of our point q such that π−1(U) is isomorphic to the trivial
vector bundle U× R

n. This fact is expressed by the following diagram:

π−1(U)
ψ

−−−−→ U× R
n

π

y
y

U
id

−−−−→ U.

(8.6)

The isomorphism ψ in the diagram (8.6) is linear within each fiber of the bundle
VM . Let’s denote r0 = ψ(v) ∈ R

n and let’s choose the constant section r(q) ≡ r0

of the trivial bundle U× R
n. Its preimage b = ψ−1(r) is a smooth section of VM

over the open set U and bq = v. However, b is a local section. In order to convert
it to a global section let’s choose some smooth function η in M such that η(q) = 1
at the point q and such that η ≡ 0 outside the open set U . Then let’s define

a =

{
η b within U,

0 outside U.
(8.7)

It is easy to see that a in (8.7) is a smooth global section of the bundle VM . From
η(q) = 1 and froom bq = v we derive that aq = v. Thus, we have proved that the
module A fits the item (1) in the definition 8.3.

Now let’s proceed with the item (2) in the definition 8.3. Suppose that a is a
smooth section of the bundle VM such that aq = 0 at the point q ∈M . Applying
the isomorphism ψ taken from the diagram (8.6) to the restriction of a to the open
set U , we get the following smooth section of the trivial bundle U× R

n:

r = ψ(a) =

∥∥∥∥∥∥∥

β1
...
βn

∥∥∥∥∥∥∥
=

n∑

i=1

βi ei. (8.8)

Here e1, . . . , en are constant unit vectors in R
n:

e1 =

∥∥∥∥∥∥∥∥∥∥

1
0
...
0
0

∥∥∥∥∥∥∥∥∥∥

, e2 =

∥∥∥∥∥∥∥∥∥∥

0
1
...
0
0

∥∥∥∥∥∥∥∥∥∥

, . . . , en−1 =

∥∥∥∥∥∥∥∥∥∥

0
0
...
1
0

∥∥∥∥∥∥∥∥∥∥

, en =

∥∥∥∥∥∥∥∥∥∥

0
0
...
0
1

∥∥∥∥∥∥∥∥∥∥

. (8.9)

From aq = 0 and from (8.8) we derive that the smooth functions β1, . . . , βn should
vanish at the point q, i. e. βi(q) = 0. In (8.8) the vectors (8.9) represent some

constant smooth sections of the trivial bundle U× R
n. Let’s denote Êi = ψ−1(ei).

Then Ê1, . . . , Ên are smooth local sections of the bundle VM over the open set
U . From (8.8) we derive the following expansion:

a =

n∑

i=1

βi Êi. (8.10)
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The expansion (8.10) is a local expansion, it is not the expansion of a, but of its
restriction to the open set U . In order to make it global let’s define

αi =

{
η βi within U,

0 outside U,
Ei =

{
η Êi within U,

0 outside U.
(8.11)

Here η again is a smooth function in M such that η(q) = 1 and such that it is
identically zero outside U . Multiplying both sides of the expansion (8.10) by η2

and taking into account (8.11), we derive

a η2 =

n∑

i=1

αiEi. (8.12)

Then, for the original section a due to (8.12) we get

a = (1 − η2)a + a η2 = (1 − η2)a +
n∑

i=1

αiEi.

Let’s denote α0 = 1− η and E0 = (1 + η)a. Then the above local expansion (8.10)
is transformed to the following global one:

a =

n∑

i=0

αiEi. (8.13)

Since βi(q) = 0 for i = 1, . . . , n and since η(q) = 1, we find that all coefficients αi
in (8.13) do vanish at the point q. Comparing (8.13) with the expansion in the item
(2) of the definition 8.3, we finally conclude that the module A admits a complete
localization. The theorem 8.2 is proved. �

Now let’s return to the definition 8.1 and consider the map ξ : T 1
0 (M) → T 1

0 (M)
associated with some differentiation D. The extended vector fields are naturally
interpreted as sections of a vector bundle. Indeed, any tensor bundle is a vector
bundle in the sense that any tensor space Tαβ (p,M) is a linear vector space over the

real numbers R. Therefore, one can apply the theorem 8.2 to the module T 1
0 (M).

As it was mentioned above, the mapping ξ : T 1
0 (M) → T 1

0 (M) is an endomorphism.
Applying the theorem 8.1 to it, we find that ξ is given by some extended tensor
field S of the type (1, 1) acting as a linear operator at each point q ∈ N :

ξ(X) = C(S ⊗ X) for any X ∈ T 1
0 (M). (8.14)

Theorem 8.3. Defining a degenerate differentiation D of the algebra T(M) is
equivalent to defining some extended tensor field S of the type (1, 1).

Apart from (8.14), the theorem 8.3 can be understood in a coordinate form.
Indeed, for a degenerate differentiation D from (7.2) and from the definition 8.1 we

derive Zi = 0 and Zi1... irj1... js
[P ] = 0. Since Zi = 0, the transformation formulas (7.16)

and (7.17) now are written as follows:

Γki =

n∑

b=1

n∑

a=1

Ska T
b
i Γ̃ab , Γ̃ki =

n∑

b=1

n∑

a=1

T ka S
b
i Γab . (8.15)



22 RUSLAN SHARIPOV

The formulas (8.15) mean that Γki and Γ̃ab are the components of some extended
tensor field of the type (1, 1), see (1.12) and (1.13) for comparison. Applying (7.26)
to (8.15), we find that Γki are the components of the tensor field S in some local
chart. This is a coordinate proof for the theorem 8.3.

9. Covariant differentiations.

The set of differentiations of the extended algebra T(M) possesses the structure
of a module over the ring of smooth functions F(N). The set of extended vector
fields T 1

0 (M) is also a module over the same ring F(N). Therefore, the following
definition is consistent.

Definition 9.1. Say that in a manifold M a covariant differentiation of the algebra
of extended tensor fields T(M) is given if some homomorphism of F(N)-modules
∇ : T 1

0 (M) → D(M) is given. The image of a vector field Y under such homo-
morphism is denoted by ∇Y. The differentiation D = ∇Y ∈ D(M) is called the
covariant differentiation along the vector field Y.

Let’s remember that the module D(M) admits a localization. Indeed, according
to the theorem 7.3 each differentiation D is a field of differential operators. As for
the differential operators themselves, they form finite-dimensional R-linear spaces
D(q,M), one per each point q ∈ N . The coefficients Zi, Zi1... irj1... js

[P ], and Γki from

(7.26) are coordinates within D(q,M). Therefore, we have

dim(D(q,M)) = n+ n2 +

Q∑

P=1

nrP +sP = n2 + dimN. (9.1)

Under a change of a local chart the coefficients Zi, Zi1... irj1... js
[P ], Γki are transformed

according to the formulas (7.14), (7.15), (7.16), and (7.17). These formulas are

linear with respect to Zi, Zi1... irj1... js
[P ], Γki and with respect to transformed coordinates

Z̃i, Z̃i1... irj1... js
[P ], Γ̃ki . Therefore, the spaces D(q,M) are glued into a vector bundle of

the dimension (9.1) for which N is a base manifold. This fact means that one can
apply the theorem 8.2 to the module D(M).

Let ∇ be some covariant differentiation of the algebra of extended tensor fields.
Then, applying the theorem 8.1 to the homomorphism ∇ : T 1

0 (M) → D(M), we
find that this homomorphism is composed by R-linear maps Tπ(q)(M) → D(q,M)
specific to each point q ∈ N . This fact is expressed by the following formula:

∇YX = C(Y ⊗∇X) =

n∑

j=1

n∑
...

n∑

i1, ... , iα
j1, ... , jβ

Y j ∇jX
i1... iα
j1... jβ

E
j1... jβ
i1... iα

. (9.2)

Looking at (9.2), we see that each covariant differentiation ∇ can be treated as an
operator producing the extended tensor field ∇X of the type (α, β + 1) from any
given extended tensor field X of the type (α, β). This operator increases by one
the number of covariant indices of a tensor field X. It is called the operator of
covariant differential associated with the covariant differentiation ∇.

Let’s consider the linear map Tπ(q)(M) → D(q,M) produced by some covariant
differentiation ∇ at some particular point q ∈ N . In a local chart this map is given
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by some linear functions expressing the components of the differential operator Dq,
where D = ∇Y, through the components of the vector Yq:

Zi1... irj1... js
[P ] =

n∑

j=1

Z i1... ir
j j1... js

[P ] Y j , (9.3)

Zi =

n∑

j=1

Zij Y
j , Γki =

n∑

j=1

Γkj i Y
j . (9.4)

Substituting (9.3) and (9.4) into the formula (7.26), then taking into account (9.2)
and (7.25), we derive the following formula:

∇jX
i1... iα
j1... jβ

=

n∑

i=1

Zij
∂X i1... iα

j1... jβ

∂xi
+

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Z h1... hr

j k1... ks
[P ]

∂X i1... iα
j1... jβ

∂T h1... hr

k1... ks
[P ]

+

+

α∑

m=1

n∑

vm=1

Γimj vm
X i1... vm... iα
j1... ... ... jβ

−

β∑

m=1

n∑

wm=1

Γwm

j jm
X i1... ... ... iα
j1... wm... jβ

,

(9.5)

From (7.14) and (7.15) we derive the following transformation formulas for the

quantities Zij , Z
i1... ir
j j1... js

[P ] in (9.3) and (9.4):





Zij =

n∑

h=1

n∑

k=1

Sih T
k
j Z̃hk ,

Z i1... ir
j j1... js

[P ] =

n∑

k=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
T kj Z̃ h1... hr

k k1... ks
[P ] −

−

r∑

m=1

n∑

i=1

n∑

h=1

n∑

k=1

n∑

vm=1

θimi vm
T i1... vm... ir
j1... ... ... js

[P ] Sih T
k
j Z̃hk +

+
s∑

m=1

n∑

i=1

n∑

h=1

n∑

k=1

n∑

wm=1

θwm

i jm
T i1... ... ... ir
j1... wm... js

[P ] Sih T
k
j Z̃hk ,

(9.6)





Z̃ij =

n∑

h=1

n∑

k=1

T ih S
k
j Z

h
k ,

Z̃ i1... ir
j j1... js

[P ] =

n∑

k=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
Skj Z

h1... hr

k k1... ks
[P ] −

−

r∑

m=1

n∑

i=1

n∑

h=1

n∑

k=1

n∑

vm=1

θ̃imi vm
T i1... vm... ir
j1... ... ... js

[P ] T ih S
k
j Z

h
k +

+

s∑

m=1

n∑

i=1

n∑

h=1

n∑

k=1

n∑

wm=1

θ̃wm

i jm
T i1... ... ... ir
j1... wm... js

[P ] T ih S
k
j Z

h
k .

(9.7)
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Similarly, from (7.16) and (7.17) we derive the transformation formulas for the
quantities Γkj i in the formula (9.4):

Γkj i =

n∑

b=1

n∑

a=1

n∑

c=1

Ska T
b
i T

c
j Γ̃ac b +

n∑

a=1

Zaj θ
k
ai, (9.8)

Γ̃kj i =

n∑

b=1

n∑

a=1

n∑

c=1

T ka S
b
i S

c
j Γac b +

n∑

a=1

Z̃aj θ̃
k
ai. (9.9)

The formula (9.5) yields the explicit expression for an arbitrary covariant derivative
in general case. However, below we consider some specializations of this formula
which appear to be more valuable than the formula (9.5) itself.

10. Degenerate covariant differentiations.

Definition 10.1. A covariant differentiation ∇ is said to be degenerate if ∇Yψ = 0
for any extended scalar field ψ and for any extended vector field Y.

This definition is concordant with the definition 8.1. If ∇ is a degenerate covari-
ant differentiation, then D = ∇Y is a degenerate differentiation for any extended
vector field Y. According to the theorem 8.3 and formula (8.14), D is associated
with some extended tensor field S of the type (1, 1). In the present case this field
should depend of Y, so the homomorphism ∇ : T 1

0 (M) → D(M) in the defini-
tion 9.1 reduces to the homomorphism

T 1
0 (M) → T 1

1 (M). (10.1)

Applying the theorem 8.1 to the homomorphism (10.1) we derive the following
theorem for degenerate covariant differentiations.

Theorem 10.1. Defining a degenerate covariant differentiation ∇ of the algebra
T(M) is equivalent to defining some extended tensor field S of the type (1, 2).

Like the theorem 8.3, this theorem can be understood in a coordinate form.
Indeed, if ∇ is degenerate, the vector field (7.2) associated with the differentiation
D = ∇Y should be identically zero for any extended vector field Y. This means
that the coefficients Z i1... ir

j j1... js
[P ] and Zij in (9.3) and (9.4) are equal to zero. Then

the transformation formulas (9.8) and (9.9) are written as follows:

Γkj i =

n∑

b=1

n∑

a=1

n∑

c=1

Ska T
b
i T

c
j Γ̃ac b, (10.2)

Γ̃kj i =

n∑

b=1

n∑

a=1

n∑

c=1

T ka S
b
i S

c
j Γac b. (10.3)

Comparing (10.2) and (10.3) with (1.12) and (1.13), we see that Γkj i behave like

the components of a tensor of the type (1, 2). They are that very quantities that
define the extended tensor field S in a local chart.
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11. Horizontal and vertical covariant differentiations.

Suppose again that some composite tensor bundle N = T
r1... rQ
s1... sQM over a base

manifold M is fixed. Let ∇ be a covariant differentiation of the algebra of extended
tensor fields T(M). Then D = ∇Y is a differentiation of T(M), its restriction to
the set of scalar fields is given by some vector field Z = Z(Y) in N (see formula
(7.2) above). In other words, we have a homomorphism

T 1
0 (M) → T 1

0 (N) (11.1)

that maps an extended vector field Y of M to some regular vector field of N .
Applying the localization theorem 8.1 to the homomorphism (11.1), we come to
the following definition and the theorem after it.

Definition 11.1. Suppose that for each point q of the composite tensor bundle N
over the base M some R-linear map of the vector spaces

f : Tπ(q)(M) → Tq(N) (11.2)

is given. Then we say that a lift of vectors from M to the bundle N is defined.

Theorem 11.1. Any homomorphism of F(N)-modules (11.1) is uniquely associ-
ated with some smooth lift of vectors from M to N . It is represented by this lift as
a collection of R-linear maps Tπ(q)(M) → Tq(N) specific to each point q ∈ N .

Now let’s consider the canonical projection π : N → M . The differential of this
map acts in the direction opposite to the lift of vectors (11.2) introduced in the
definition 11.1. Indeed, we have π∗ : Tq(N) → Tπ(q)(M) at each point q ∈ N .
Therefore, the composition f ◦π∗ acts from Tπ(q)(M) to Tπ(q)(M). This composite
map determines an extended operator field (a tensor field of the type (1, 1)).

Definition 11.2. A lift of vectors f from M to N is called vertical if π∗ ◦ f = 0.

Definition 11.3. A lift of vectors f from M to N is called horizontal if π∗ ◦ f = id,
i. e. if the composition π∗ ◦ f coincides with the field of identical operators.

Like any other bundle, the composite tensor bundle N naturally subdivides into
fibers over the points of the base manifold M . The set of vectors tangent to the fiber
at a point q is a linear subspace within the tangent space Tq(N). This subspace
coincides with the kernel of the mapping π∗. We denote this subspace

Vq(N) = Kerπ∗ ⊂ Tq(N) (11.3)

and call it the vertical subspace. Any vertical lift of vectors determines a set linear
maps from Tπ(q) to the vertical subspace (11.3) for each point q ∈ N .

Lemma 11.1. The difference of two horizontal lifts is a vertical lift of vectors from
the base manifold M to the bundle N .

Indeed, if one takes two horizontal lifts of vectors f1 and f2, then π∗ ◦ (f1−f2) =
= π∗ ◦ f1−π∗ ◦ f2 = id− id = 0. This means that the difference f1−f2 is a vertical
lift according to the definition 11.2.

Each covariant differentiation ∇ is associated with some lift of vectors (see the
definition 11.1, and the theorem 11.1 above).
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Definition 11.4. A covariant differentiation ∇ of the algebra of extended tensor
fields T(M) is called a horizontal differentiation (or a vertical differentiation) if the
corresponding lift of vectors is horizontal (or vertical).

Lemma 11.2. The difference of two horizontal covariant differentiations is a ver-
tical covariant differentiation of the algebra of extended tensor fields T(M).

The lemma 11.2 is an immediate consequence of the lemma 11.1. Unlike [4],
here we shall not pay much attention to vertical covariant differentiations. In the
present more general theory they are replaced by a more general construct.

12. Native extended tensor fields

and vertical multivariate differentiations.

Let N = T
r1... rQ
s1... sQM be a composite tensor bundle over a base manifold M . Then

each its point q is represented by a list q = (p, T[1], . . . , T[Q]), where p ∈M and
T[1], . . . , T[Q] are some tensors at the point p (see formula (3.2) above). Let’s
consider the map that takes q to the P -th tensor T[P ] in the list. According to
the definition 4.1, this map is an extended tensor field of the type (rP , sP ). It is
canonically associated with the bundle N . Therefore, it is called a native extended
tensor field. Totally, we have Q native extended tensor fields associated with the
composite tensor bundle N = T

r1... rQ
s1... sQM , we denote them T[1], . . . , T[Q].

Definition 12.1. A multivariate differentiation of the type (β, α) in the algebra
of extended tensor fields T(M) is a homomorphism of F(N)-modules

∇ : Tαβ (M) → D(M). (12.1)

If Y is an extended tensor field of the type (α, β), then we can apply the homomor-
phism (12.1) to it. As a result we get the differentiation D = ∇Y of the algebra
T(M). It is called the multivariate differentiation along the tensor field Y.

Note that the type of a multivariate differentiation (β, α) in the above defini-
tion 12.1 is dual to the type of the module Tαβ (M) in the formula (12.1). If α = 1
and β = 0, the definition 12.1 reduces to the definition 9.1. This means that a co-
variant differentiation is a special multivariate differentiation whose type is (0, 1).
Similarly, a multivariate differentiation of the type (1, 0) is called a contravariant
differentiation. Covariant differentiations of extended tensor fields appear to be a
useful tool in describing Newtonian dynamical systems in Riemannian manifolds
(see [4–23]). The same is true for contravariant differentiations in the case of Hamil-
tonian dynamical systems (see [24–30]). As for general multivariate differentiations
introduced in the above definition 11.1, I think they will find their proper place in
theories of continuous media (see [34] and [36–39]) and in field theories.

A remark. Let’s consider the special case, where the tensor field Y of the type
(α, β) is constructed as a tensor product:

Y = Y[1] ⊗ . . .⊗ Y[α] ⊗ H[1]⊗ . . .⊗ H[β]. (12.2)

Here Y[1], . . . , Y[α] are some vector fields and H[1], . . . , H[β] are some covector
fields. Substituting (12.2) into ∇Y, we find that ∇Y is a differentiation depending
on α vectorial variables and β covectorial variables. Keeping in mind this special
case, we used the term «multivariate differentiation» for ∇Y in the definition 12.1.
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Let ∇ be some multivariate differentiation of the algebra of extended tensor
fields T(M). Then, applying the localization theorem 8.1 to the homomorphism
∇ : Tαβ (M) → D(M), we find that this homomorphism is composed by R-linear

maps Tαβ (π(q),M) → D(q,M) specific to each point q ∈ N . This fact is expressed

by the following formula similar to the formula (9.2) above:

Y 7→ ∇YX =

n∑
...

n∑

i1, ... , iα
j1, ... , jβ

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Y h1... hr

k1... ks
∇k1... ks

h1... hr
X i1... iα
j1... jβ

×

× E
j1... jβ
i1... iα

= C(Y ⊗∇X).

(12.3)

Looking at (12.3), we see that each multivariate differentiation ∇ of the type (s, r)
can be treated as an operator producing the extended tensor field ∇X of the type
(α + s, β + r) from any given extended tensor field X of the type (α, β). This
operator is called the operator of multivariate differential of the type (s, r).

Let P be an integer number such that 1 6 P 6 Q and let Y be an extended
tensor field of the type (rP , sP ). Remember that each point q of the composite
tensor bundle N = T

r1... rQ
s1... sQM is a list of the form (3.2):

q = (p, T[1], . . . , T[Q]). (12.4)

Note that the P -th tensor T[P ] in the list (12.4) has the same type as the tensor
Y = Yq (the value of the extended tensor field Y at the point q). They both belong
to the same tensor space T rP

sP
(p,M), therefore we can add them. Then

q(t) = (p, T[1], . . . , T[P ] + tYq, . . . , T[Q]) (12.5)

is a one-parametric set of points in N , the scalar variable t being its parameter. In
other words, in (12.5) we have a line (a straight line) passing through the initial
point q ∈ N and lying completely within the fiber over the point p = π(q) ∈ M .
Suppose that X is some extended tensor field of the type (α, β). Denote by X(t)
the values of this tensor field at the points of the above parametric line (12.5):

X(t) = Xq(t). (12.6)

Since π(q(t)) = p = const for any t, the values of the tensor-valued function (12.6)
all belong to the same tensor space Tαβ (p,M). Hence, we can add and subtract
them, and, since X is a smooth field, we can take the following limit of the ratio:

Ẋ(t) = lim
τ→ 0

X(t+ τ) − X(t)

τ
. (12.7)

Let’s denote by Zq the value of the derivative (12.7) for t = 0:

Zq = Ẋ(0) =
dXq(t)

dt t=0
. (12.8)

It is easy to understand that, when q is fixed, Zq is a tensor from the tensor space
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Tαβ (p,M) at the point p = π(q). By varying q ∈ N , we find that the tensors Zq
constitute a smooth extended tensor field Z. So, we have constructed a map

D : T(M) → T(M). (12.9)

It is easy to check up that the map (12.9) defined by means of the formulas (12.5),
(12.6), (12.7), and (12.8) is a differentiation of the algebra of extended tensor fields
T(M), i. e. D ∈ D(M) (see definition 6.2 above). Moreover, due to the formula
(12.5) this differentiation D depends on the extended tensor field Y. This depen-
dence D = D(Y) is a homomorphism T rP

sP
(M) → D(M) fitting the definition 12.1.

The easiest way to prove this fact is to write the equality (12.8) in a local chart,
i. e. in some local coordinates (3.3):

Z =

n∑
...

n∑

i1, ... , iα
j1, ... , jβ

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Y h1... hr

k1... ks

∂X i1... iα
j1... jβ

∂T h1... hr

k1... ks
[P ]

E
j1... jβ
i1... iα

. (12.10)

Here r = rP and s = sP . Now, comparing (12.10) with the formula (12.3), we can
write Z = ∇Y[P ]X, where ∇ is a special sign, the «double bar nabla», that we
shall use for denoting the multivariate differentiations defined through the formulas
(12.5), (12.6), (12.7), and (12.8). In a local chart ∇[P ] is represented by the formula

∇k1... ks

h1... hr
[P ] =

∂

∂T h1... hr

k1... ks
[P ]

, (12.11)

where r = rP and s = sP . This formula (12.11) is a short version of the formula
(12.10). Following the tradition, we shall use the term multivariate derivative for
the differential operator representing the differentiation ∇[P ] in local coordinates.

Definition 12.2. The multivariate differentiation ∇[P ] defined through the for-
mulas (12.5), (12.6), (12.7), (12.8) and represented by the formula (12.11) in local
coordinates is called the P -th canonical1 vertical multivariate differentiation asso-
ciated with the composite tensor bundle N = T

r1... rQ
s1... sQM .

Let T[R] be R-th native extended tensor field associated with the tensor bundle
N = T

r1... rQ
s1... sQM and let Y be some arbitrary extended tensor field of the type

(rP , sP ). Then we can apply ∇Y[P ] to T[R]. By means of the direct calculations
using the explicit formula (12.11) in local coordinates we find that

∇Y[P ]T[R] =

{
Y for P = R,

0 for P 6= R.

Like covariant differentiations (see theorem 11.1 and definition 11.4), multivariate
differentiations are associated with some lifts. However, unlike covariant differen-
tiations, they lift not vectors, but tensors, though converting them into tangent
vectors of the bundle N . In the case of the canonical multivariate differentiation

1 Note that ∇[P ] is canonically associated with the bundle N , its definition does not require
any auxiliary structures like metrics and connections.
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∇[P ] for each point q ∈ N we have some R-linear map

f [P ] : T rs (π(q),M) → Tq(N), (12.12)

where r = rP and s = sP . The map (12.12) takes a tensor Y ∈ T rs (π(q),M) to the
following vector in the tangent space Tq(N) of the manifold N at the point q:

f [P ](Y) =

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Y h1... hr

k1... ks
Vk1... ks

h1... hr
[P ]. (12.13)

Here again r = rP , s = sP , and the vectors Vk1... ks

h1... hr
[P ] are given by the second

formula (3.7). In a coordinate-free form the formula (12.13) can be interpreted as
follows: the vector f [P ](Y) in (12.13) is the tangent vector of the parametric curve
(12.5) at its initial point q = q(0).

Let’s consider the image of the R-linear map (12.12). We denote it Vq[P ](N).
Then from (12.13) one easily derives that Vq[P ](N) is a subspace within the vertical
subspace Vq(N) of the tangent space Tq(N). Moreover, we have

Vq(N) = Vq[1](N) ⊕ . . .⊕ Vq [Q](N). (12.14)

The formula (12.14) is a well-known fact, it follows from (3.1). Due to the inclusion

Im f [P ] = Vq[P ](N) ⊂ Vq(N)

the multivariate differentiation (12.11) is a vertical differentiation.

13. Horizontal covariant differentiations

and extended connections.

Let ∇ be some horizontal covariant differentiation of the algebra of extended
tensor fields T(M) and let f be the horizontal lift of vectors associated with it (see
definition 11.4). The horizontality of f means that the image of the linear map
(11.2) is some n-dimensional subspace Hq(N) within the tangent space Tq(N). It
is called a horizontal subspace. Due to π∗ ◦ f = id the mappings

f : Tπ(q)(M) → Hq(N), π∗ : Hq(N) → Tπ(q)(M) (13.1)

are inverse to each other. Due to the same equality π∗ ◦ f = id the sum of the
vertical and horizontal subspaces is a direct sum:

Hq(N) ⊕ Vq(N) = Tq(N). (13.2)

Theorem 13.1. Defining a horizontal lift of vectors from M to N is equivalent
to fixing some direct complement Hq(N) of the vertical subspace Vq(N) within the
tangent space Tq(N) at each point q ∈ N .

Proof. Suppose that some horizontal lift of vectors f is given. Then the subspace
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Hq(N) at the point q is determined as the image of the mapping (11.2), while the
relationship (13.2) is derived from π∗ ◦ f = id and from (11.3).

Conversely, assume that at each point q ∈ N we have a subspace Hq(N) com-
plementary to Vq(N). Then at each point q ∈ N the relationship (13.2) is fulfilled.
The kernel of the mapping π∗ : Tq(N) → Tπ(q)(M) coincides with Vq(N), there-
fore the restriction of π∗ to the horizontal subspace Hq(N) is a bijection. The
lift of vectors f from M to N then can be defined as the inverse mapping for
π∗ : Hq(N) → Tπ(q)(M). If f is defined in this way, then the mappings (13.1)
appear to be inverse to each other and we get the equality π∗ ◦ f = id. According
to the definition 11.3, it means that f is a horizontal mapping. The theorem is
completely proved. �

Let’s study a horizontal lift of vectors f in a coordinate form. Upon choosing
some local chart in M we can consider the coordinate vector fields E1, . . . , En in
this chart (see (1.3)). Applying the lift f to them, we get

f(Ej) = Uj −

Q∑

P=1

n∑
...

n∑

i1, ... , ir
j1, ... , js

Γ i1... ir
j j1... js

[P ] V
j1... js
i1... ir

[P ]. (13.3)

Here r = rP and s = sP , while Uj and V
j1... js
i1... ir

[P ] are determined by (3.7) This
formula for f(Ej) follows from π∗ ◦ f = id due to the equalities

π∗(Uj) = Ej, π∗

(
V
j1... js
i1... ir

[P ]
)

= 0. (13.4)

The quantities Γ i1... ir
j j1... js

[P ] in (13.3) are called the components of a horizontal lift
of vectors in a local chart U . If the lift f is induced by some horizontal covariant
differentiation ∇, then for its components in(13.4) we have

Γ i1... ir
j j1... js

[P ] = −Z i1... ir
j j1... js

[P ]. (13.5)

The quantities Z i1... ir
j j1... js

[P ] in (13.5) are the same as in (9.3), (9.5), (9.6), and in

(9.7). As for the quantities Zij in (9.4), in the case of a horizontal covariant differ-

entiation they are given by the Kronecker’s delta-symbol: Zij = δij . Substituting

Zij = Z̃ij = δij into (9.6) and taking into account (13.5), we derive






Γ i1... ir
j j1... js

[P ] =

n∑

k=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Si1h1
. . . Sirhr

T k1j1 . . . T
ks

js
T kj Γ̃h1... hr

k k1... ks
[P ] +

+

r∑

m=1

n∑

vm=1

θimj vm
T i1... vm... ir
j1... ... ... js

[P ] −

s∑

m=1

n∑

wm=1

θwm

j jm
T i1... ... ... ir
j1... wm... js

[P ],

(13.6)





Γ̃ i1... ir
j j1... js

[P ] =

n∑

k=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

T i1h1
. . . T irhr

Sk1j1 . . . S
ks

js
Skj Γh1... hr

k k1... ks
[P ] +

+
r∑

m=1

n∑

vm=1

θ̃imj vm
T̃ i1... vm... ir
j1... ... ... js

[P ] −
s∑

m=1

n∑

wm=1

θ̃wm

j jm
T̃ i1... ... ... ir
j1... wm... js

[P ],

(13.7)
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Here r = rP , s = sP . The θ-parameters are taken from (3.15), (3.10), and (3.12).
The formulas (13.6) and (13.7) express the transformation rules for the components
of a horizontal lift of vectors in (13.3).

Another geometric structure associated with a horizontal covariant differentia-
tion ∇ reveals when we apply D = ∇Y to the module T 1

0 (M). This produces the
mapping (7.23). In a local chart it is described by the formula (7.13). In the present

case we can take Y = Êj and write this formula as

∇
Êj

Êi =

n∑

k=1

Γkj iEk. (13.8)

Here Êi and Êj are determined by the formula (7.13). Relying on the lemma 7.4
and on the localization theorem 8.1, we can write (13.8) as follows:

∇Ej
Ei =

n∑

k=1

Γkj iEk. (13.9)

The coefficients Γkj i are the same as in (9.4). Since Zij = δij for a horizontal covariant

differentiation, the transformation formulas (9.8) and (9.9) for the coefficients Γkj i
in (13.8) and (13.9) now reduce to the following ones:

Γkj i =

n∑

b=1

n∑

a=1

n∑

c=1

Ska T
b
i T

c
j Γ̃ac b +

n∑

a=1

θkj i, (13.10)

Γ̃kj i =

n∑

b=1

n∑

a=1

n∑

c=1

T ka S
b
i S

c
j Γac b +

n∑

a=1

θ̃kj i. (13.11)

Definition 13.1. Let M be a smooth manifold and let N = T
r1... rQ
s1... sQM be a com-

posite tensor bundle over M . An extended affine connection Γ is a geometric object
in each local chart of M represented by its components Γkj i and such that its com-

ponents are smooth functions of the variables (3.3) transformed according to the
formulas (13.10) and (13.11) under a change of a local chart.

Theorem 13.2. On any smooth paracompact manifold M equipped with a compos-
ite tensor bundle N = T

r1... rQ
s1... sQM there is at least one extended affine connection.

We shall not prove this theorem here. Its proof for the spacial case, where
N = TM , is given in Chapter III of the thesis [4]. This proof can be easily
transformed for the present more general case. Note also that any traditional affine
connection fits the above definition 13.1 being a special case for this more general
concept of an extended connection.

Definition 13.2. A horizontal covariant differentiation ∇ of the algebra of ex-
tended tensor fields T(M) associated with some composite tensor bundle T

r1... rQ
s1... sQM

is called a spatial covariant differentiation or a spatial gradient if

∇T[P ] = 0 for all P = 1, . . . , Q, (13.12)

i. e. if the operator ∇ annuls all native extended tensor fields T[1], . . . , T[Q].
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Let’s study the equality (13.12) specifying spatial covariant differentiations. For
this purpose we use the formula (9.5) substituting Zij = δij and (13.5) into it:

∇jX
i1... iα
j1... jβ

=
∂X i1... iα

j1... jβ

∂xj
−

Q∑

R=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Γh1... hr

j k1... ks
[R]

∂X i1... iα
j1... jβ

∂T h1... hr

k1... ks
[R]

+

+

α∑

m=1

n∑

vm=1

Γimj vm
X i1... vm... iα
j1... ... ... jβ

−

β∑

m=1

n∑

wm=1

Γwm

j jm
X i1... ... ... iα
j1... wm... jβ

,

(13.13)

According to the formula (13.12), we should substitute α = r = rP , β = s = sP , and

X i1... iα
j1... jβ

= T i1... irj1... js
[P ] into the formula (13.13). Recall that the quantities T i1... irj1... js

[P ]

in (9.5) and (13.13) are treated as independent variables. Therefore, we get

∇jT
i1... ir
j1... js

[P ] = −Γ i1... ir
j j1... js

[P ] +

+
r∑

m=1

n∑

vm=1

Γimj vm
T i1... vm... ir
j1... ... ... js

[P ] −
s∑

m=1

n∑

wm=1

Γwm

j jm
T i1... ... ... ir
j1... wm... js

[P ] = 0.

This formula can be rewritten in the following form:

Γ i1... ir
j j1... js

[P ] =

r∑

m=1

n∑

vm=1

Γimj vm
T i1... vm... ir
j1... ... ... js

[P ] −

−

s∑

m=1

n∑

wm=1

Γwm

j jm
T i1... ... ... ir
j1... wm... js

[P ].

(13.14)

Substituting (13.14) back into (13.13), we derive

∇jX
i1... iα
j1... jβ

=
∂X i1... iα

j1... jβ

∂xj
+

α∑

m=1

n∑

vm=1

Γimj vm
X i1... vm... iα
j1... ... ... jβ

−

−

Q∑

R=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

r∑

m=1

n∑

vm=1

Γhm

j vm
T h1... vm... hr

k1... ... ... ks
[R]

∂X i1... iα
j1... jβ

∂T h1... hr

k1... ks
[R]

−

−

β∑

m=1

n∑

wm=1

Γwm

j jm
X i1... ... ... iα
j1... wm... jβ

+

+

Q∑

R=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

s∑

m=1

n∑

wm=1

Γwm

j km
T h1... ... ... hr

k1... wm... ks
[R]

∂X i1... iα
j1... jβ

∂T h1... hr

k1... ks
[R]

.

(13.15)

The theorem 7.2 applied to a horizontal covariant differentiation says that any
such differentiation is defined by two independent geometric structures:

(1) a horizontal lift of vectors from M to N ;
(2) an extended connection.

The formula (13.14) relates these two structures. It expresses the components of
the horizontal lift in (13.3) through the components of an extended connection Γ
in (13.9). This result is formulated as the following theorem.
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Theorem 13.3. Defining a spacial covariant differentiation in the algebra of ex-
tended tensor fields T(M) is equivalent to defining an extended connection Γ.

14. The structural theorem for differentiations.

Theorem 14.1. Let M be a smooth manifold and let N = T
r1... rQ
s1... sQM be a composite

tensor bundle over M . If M is equipped with some extended affine connection Γ,
then each differentiation D of the algebra of extended tensor fields T(M) in this
manifold M is uniquely expanded into a sum

D = ∇X +

Q∑

P=1

∇YP
[P ] + S, (14.1)

where ∇X is the spacial covariant differentiation along some extended vector field
X, ∇YP

[P ] is the P -th canonical vertical multivariate differentiation along some
extended tensor field YP of the type (rP , sP ), and S is a degenerate differentiation
given by some extended tensor field S of the type (1, 1).

Proof. Let D ∈ D(M). Then its restriction to T 0
0 (M) is given by some vector

field Z in N . The extended affine connection Γ in M determines some horizontal
lift of vectors f from M to N . Its components in a local chart are given by the
formula (13.14). According to the theorem 13.1, this lift of vectors determines the
expansion of the tangent space Tq(N) into a direct sum (13.2) at each point q ∈ N .
The vertical subspace Vq(N) in (13.2) has its own expansion (12.14) into a direct
sum. Combining (13.2) and (12.14), we obtain

Tq(N) = Hq(N) ⊕ Vq[1](N) ⊕ . . .⊕ Vq[Q](N). (14.2)

Then the vector field Z is expanded into a sum of vector fields

Z = H + V1 + . . .+ VQ (14.3)

uniquely determined by the expansion (14.2). Due to the maps (12.12) each vector
field VP in (14.3) is uniquely associated with some extended tensor field YP of
the type (rP , sP ). Similarly, the vector field H is uniquely associated with the the
extended vector field X such that Hq = f(Xq). Then we can consider the sum

D̃ = ∇X +

Q∑

P=1

∇YP
[P ]. (14.4)

The sum (14.4) is a differentiation of T(M) such that its restriction to T 0
0 (M) is

given by the vector (14.3). Hence, D−D̃ is a differentiation of T(M) with identically

zero restriction to T 0
0 (M). This means that D − D̃ is a degenerate differentiation

(see definition 8.1). Applying the theorem 8.3, we find that S = D− D̃ is given by
some extended tensor field S of the type (1, 1). Thus, the expansion (14.1) and the
theorem 14.1 in whole are proved. �

The theorem 14.1 is the structural theorem for differentiations in the algebra of
extended tensor fields T(M). It approves our previous efforts in studying the three
basic types of differentiations which are used in the formula (14.1).
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§ 15. Commutation relationships and curvature tensors.

Let’s remember that the set of all differentiations D(M) is an infinite-dimensional
Lie algebra (see formula (6.1)). Using the above structural theorem 14.1, one can
give a more detailed description of this Lie algebra. Let’s begin with degenerate
differentiations. Assume that S1 and S2 are two degenerate differentiations given
by two extended tensor fields S1 and S2 of the type (1, 1). Then

[S1, S2] = S3, wehere S3 = C(S1 ⊗ S2 − S2 ⊗ S1). (15.1)

The formula (15.1) means that the commutator of two degenerate differentiations is
a degenerate differentiation given by the pointwise commutator of the corresponding
extended tensor fields S1 and S2.

Assume that M is equipped with an extended affine connection Γ. Then we
can consider the commutators of some degenerate differentiation S with the spa-
cial covariant differentiation ∇X and with the P -th canonical vertical multivariate
differentiation ∇Y[P ]. These commutators are given by the formula

[∇X, S] = S1, where S1 = ∇XS;
(15.2)

[∇Y[P ], S] = S2, where S2 = ∇Y[P ]S.

The formulas (15.2) mean that both commutators are again degenerate differentia-
tions. They are given by the extended tensor fields ∇XS and ∇Y[P ]S respectively.

The commutator of two canonical vertical multivariate differentiations ∇X[P ]
and ∇Y[R] is composed by other two such differentiations. Indeed, we have

[∇X[P ], ∇Y[R]] = ∇U[R] −∇V[P ]. (15.3)

where U and V are determined as follows:

U = ∇X[P ]Y, V = ∇Y[R]X. (15.4)

Similarly, for the commutator of the spatial covariant differentiation ∇X with the
canonical vertical multivariate differentiation ∇Y[P ] we get

[∇X, ∇Y[P ]] = ∇U[P ] +

Q∑

R=1

∇U[R][R] −∇V + S, (15.5)

where U, U[R], and V are determined as follows:

U = ∇XY, U[R] = −ST[R], V = ∇Y[P ]X. (15.6)

As for S in (15.5) and (15.6), it is a degenerate differentiation determined by some
definite extended tensor field S of the type (1, 1) depending on X and on Y:

S = D[P ](X,Y) = C(D[P ] ⊗ X ⊗ Y). (15.7)

Similarly, U[R] in (15.6) is some definite extended tensor field of the type (rP , sP )
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depending on X, on Y, and on the indices P and R:

U[R] = Θ[P,R](X,Y) = C(Θ[P,R] ⊗ X⊗ Y). (15.8)

The basic object in the series of notations (15.6), (15.7), (15.8) is D[P ]. It is called
the P -th dynamic curvature tensor. This is an extended tensor field of the type
(sP + 1, rP + 2). Its components in a local chart are given by the formula

D k k1... ks

ij h1 ... hr
[P ] = −

∂Γkj i

∂T h1 ... hr

k1... ks
[P ]

, (15.9)

where r = rP and s = sP . Then in (15.8) we have the extended tensor field Θ[P,R]
of the type (rR + sP , sR + rP + 1). Its components are expressed through the
components of D[P ] in (15.9) according to the formula

Θ i1... iαk1... ks

j1... jβ j h1 ... hr
[P,R] =

β∑

m=1

n∑

wm=1

Dwm h1 ... hr

jm j k1... ks
[P ] T i1... ... ... iα

j1... wm... jβ
[R] −

−
α∑

m=1

n∑

vm=1

Dim h1 ... hr

vm j k1... ks
[P ] T i1... vm... iα

j1... ... ... jβ
[R],

(15.10)

where r = rP , s = sP , α = rR, and β = sR. The components of the tensor
U[R] = Θ[P,R](X,Y) in (15.8) are expressed through (15.10) as follows:

U i1... iα
j1... jβ

[R] =

n∑

j=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

Θ i1... iαk1... ks

j1... jβ j h1 ... hr
[P,R] Xj Y h1 ... hr

k1... ks
. (15.11)

Similarly, the components of the tensor S = D[P ](X,Y) in (15.7) are expressed
through (15.9) according to the following formula:

Ski =

n∑

j=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

D k k1... ks

ij h1 ... hr
[P ] Xj Y h1 ... hr

k1... ks
. (15.12)

The formula (15.10) is derived from the second formula (15.6) due to (15.7) and
(15.8). The formulas (15.11) and (15.12) are rather obvious. They complete the
series of equalities which are used in order to make certain the right hand side of
the commutation relationship (15.5).

In the last step now we consider the commutator of two spatial covariant differ-
entiations ∇X and ∇Y. The formula for this commutator is written as

[∇X, ∇Y] = ∇U +

Q∑

R=1

∇U[P ][P ] + S, (15.13)

where U and U[R] are determined in the following way:

U = ∇XY −∇YX − V, U[R] = −ST[R]. (15.14)
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Like in (15.5), by S in (15.13) and (15.14) we denote a degenerate differentiation
determined by some definite extended tensor field S of the type (1, 1) depending
on both extended vector fields X and Y:

S = R(X,Y) = C(R ⊗ X ⊗ Y). (15.15)

Similarly, V in (15.6) is some definite extended vector field depending on X and
on Y. It is expressed through the torsion tensor T:

V = T(X,Y) = C(T ⊗ X⊗ Y). (15.16)

The components of the torsion tensor in a local chart are given by the formula

T kij = Γkij − Γkj i. (15.17)

This formula (15.17) coincides with the standard formula for torsion (see [35]). The
only difference here is that Γ is assumed to be an extended connection, therefore T

is an extended tensor field of the type (1, 2).

For the parameter U[R] in (15.14) we write the formula analogous to (15.8) since
this is also some definite extended tensor field depending on X and Y:

U[R] = Ω[R](X,Y) = C(Ω[R] ⊗ X⊗ Y). (15.18)

The basic object in the series of notations (15.14), (15.15), (15.16), and (15.18) is
the curvature tensor R. In contrast to D[P ] in (15.9), we call it the static curvature
tensor. For the components of the static curvature tensor we have the formula

Rkh ij =
∂Γkjh
∂xi

−
∂Γkih
∂xj

+

n∑

a=1

Γajh Γki a −

n∑

a=1

Γaih Γkj a−

−

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

r∑

m=1

n∑

vm=1

Γhm

i vm
T h1... vm... hr

k1... ... ... ks
[P ]

∂Γkjh

∂T h1... hr

k1... ks
[P ]

+

+

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

r∑

m=1

n∑

vm=1

Γhm

j vm
T h1... vm... hr

k1... ... ... ks
[P ]

∂Γkih

∂T h1... hr

k1... ks
[P ]

+

+

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

s∑

m=1

n∑

wm=1

Γwm

i km
T h1... ... ... hr

k1... wm... ks
[P ]

∂Γkjh

∂T h1... hr

k1... ks
[P ]

−

−

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

s∑

m=1

n∑

wm=1

Γwm

j km
T h1... ... ... hr

k1... wm... ks
[P ]

∂Γkih

∂T h1... hr

k1... ks
[P ]

.

(15.19)

In the case of non-extended connection Γ the formula (15.19) reduces to the stan-
dard formula for the curvature tensor (see [35]).
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Returning back to the equality (15.18), we need to write the formula for the
components of the tensor Ω[R]. Here is this formula:

Ω i1... iα
ij j1... jβ

[R] =

β∑

m=1

n∑

wm=1

Rwm

jmij
T i1... ... ... iα
j1... wm... jβ

[R] −

−
α∑

m=1

n∑

vm=1

Rimvm ij T
i1... vm... iα
j1... ... ... jβ

[R].

(15.20)

It is similar to (15.10). The formula (15.20) is derived from (15.18), (15.15), and
from the second formula (15.14). The analogs of the formulas (15.11) and (15.12)
in this case are written as follows:

U i1... iα
j1... jβ

[R] =
n∑

i=1

n∑

j=1

Ω i1... iα
ij j1... jβ

[R] X i Y j , (15.21)

V k =
n∑

i=1

n∑

j=1

T kij X
i Y j , (15.22)

Skh =

n∑

i=1

n∑

j=1

Rkhij X
i Y j . (15.23)

The formulas (15.21), (15.22), (15.23) complete the series of equalities which are
written in order to make certain the right hand side of the commutation relationship
(15.13). As for the commutation relationships themselves, they can be derived by
direct calculations on the base of the formulas (12.11) and (13.15).

16. Coordinate representation of commutation relationships.

The first commutation relationship (15.1) is trivial. In coordinate form, i. e. in
a local chart, it means that the matrix of the tensor S3 is the matrix commutator
produced from the matrices of S1 and S2.

The next two commutator relationships (15.2) are also rather simple. They mean
that the components of S1 and S2 are derived from the components of S by means
of the formulas (12.11) and (13.15).

The fourth commutation relationship (15.3) is not so simple, but in a coordinate
form it reduces to the following one:

[∇j1... js
i1... ir

[P ], ∇
k1... kβ

h1... hα
[R]] = 0. (16.1)

The relationship (16.1) is easily derived from (12.11).
Now let’s proceed with the fifth commutation relationship (15.5). In a local chart

we should consider the commutator of ∇i and ∇j1... js
i1... ir

[P ]. From (15.5) we derive

[∇i, ∇
j1... js
i1... ir

[P ]]Xk =

n∑

h=1

D
k j1... js
h i i1... ir

[P ] Xh +

+

Q∑

R=1

n∑
...

n∑

h1, ... , hα

k1, ... , kβ

Θh1... hα j1... js
k1... kβ i i1... ir

[P,R] ∇
k1... kβ

h1... hα
[R] Xk.

(16.2)
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Here X1, . . . , Xn are the components of some extended vector field X. When
applied to an extended scalar field ϕ the same commutator is written as follows:

[∇i, ∇
j1... js
i1... ir

[P ]]ϕ =

Q∑

R=1

n∑
...

n∑

h1, ... , hα

k1, ... , kβ

Θh1... hα j1... js
k1... kβ i i1... ir

[P,R] ∇
k1... kβ

h1... hα
[R]ϕ. (16.3)

And finally, in the case of an extended covector field X one should write

[∇i, ∇
j1... js
i1... ir

[P ]]Xk = −
n∑

h=1

D
h j1... js
k i i1... ir

[P ] Xh +

+

Q∑

R=1

n∑
...

n∑

h1, ... , hα

k1, ... , kβ

Θ h1... hα j1... js
k1... kβ i i1... ir

[P,R] ∇
k1... kβ

h1... hα
[R]Xk.

(16.4)

The components of D[P ] and Θ[P,R] in the above three formulas (16.2), (16.3),
(16.4) are taken from (15.9) and (15.10) respectively.

The last commutation relationship is (15.13). In order to write it in a local chart
one should consider the commutator of two covariant derivatives ∇i and ∇j :

[∇i, ∇j ]X
k = −

n∑

h=1

T hij ∇hX
k +

n∑

h=1

Rkh ij X
h +

+

n∑
...

n∑

h1, ... , hα

k1, ... , kβ

Ω h1... hα

ij k1... kβ
[R] ∇

k1... kβ

h1... hα
[R]Xk,

(16.5)

[∇i, ∇j ]ϕ = −

n∑

h=1

T hij ∇h ϕ+

n∑
...

n∑

h1, ... , hα

k1, ... , kβ

Ω h1... hα

ij k1... kβ
[R] ∇

k1... kβ

h1... hα
[R]ϕ, (16.6)

[∇i, ∇j ]Xk = −

n∑

h=1

T hij ∇hX
k −

n∑

h=1

Rhk ij Xh +

+

n∑
...

n∑

h1, ... , hα

k1, ... , kβ

Ω h1... hα

ij k1... kβ
[R] ∇

k1... kβ

h1... hα
[R]Xk,

(16.7)

The components of the torsion tensor T, the components of the curvature tensor
R, and the components of the tensor Ω[R] in (16.5), (16.6), (16.7) are given by the
formulas (15.17), (15.19), and (15.20) respectively.

The formulas (16.2), (16.3), (16.4) and (16.5), (16.6), (16.7) are written for the
cases of vectorial, covectorial, and scalar fields. However, the lemma 7.5 and the
theorem 7.1 say that they are sufficient for to write the analogous formulas in
the case where the commutators [∇i, ∇

j1... js
i1... ir

[P ]] and [∇i, ∇j ] are applied to the
components of an arbitrary extended tensor field X.
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17. Tensor functions of tensors

and the chain rule in tensorial form.

Tensor-valued functions with tensorial arguments appear rather often in appli-
cations. The most simple examples are the following ones:

— the force field F(x1, x2, x3, v1, v2, v3) acting upon a point mass that moves
according the Newton’s second law;

— the Lagrange function L(x1, x2, x3, v1, v2, v3) of such a point mass;
— the Hamilton function H(x1, x2, x3, p1, p2, p3) of such a point mass.

These examples in a little bit more general form were mentioned in section 2 (see
comment to the formula (2.2)) and in section 4. Our next example is from the field
theory. The action integral of the electromagnetic field in vacuum is written as

S = −
1

16 π c

∫ 3∑

i=0

3∑

j=0

3∑

α=0

3∑

β=0

gij gαβ F
iα F jβ

√
− det g d4x

(see [40] for details). The term under integration in this formula is a scalar function

L = −
1

16 π c

3∑

i=0

3∑

j=0

3∑

α=0

3∑

β=0

gij gαβ F
iα F jβ . (17.1)

However, its value is determined by the tensor of the electromagnetic field F:

F iα =

∥∥∥∥∥∥∥∥∥

0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

∥∥∥∥∥∥∥∥∥

. (17.2)

Apart from (17.2), in (17.1) we have the components of the Minkowski metric:

gij =

∥∥∥∥∥∥∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥∥∥∥∥∥∥
. (17.3)

In Cartesian coordinates the Minkowski metric is represented by the matrix (17.3).
If we use some curvilinear coordinate system, the matrix components gij become
depending on the coordinates x0, x1, x2, x3 of a point in the Minkowski space. In
special relativity the role of the Minkowski metric is not so significant as in general
relativity. For this reason, writing (17.2) formally, we can indicate the presence of
g as an additional dependence on the spatial variables x0, x1, x2, x3 in L:

L = L(x0, . . . , x3, F 00, F 01, F 02, . . . , F 33). (17.4)

For each particular configuration of the electromagnetic field F ij in (17.4) are some
particular functions of x0, x1, x2, x3. However, in some cases, e. g. in deriving
the field equations from the variational principle in form of the Euler-Lagrange
equations, the quantities F ij are treated as independent variables.
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The example of the electromagnetic field, i. e. the function (17.4), can be con-
sidered as a background for various generalizations of the electromagnetism. Such
theories could include several tensorial fields T[1], . . . , T[Q]. Therefore, for the
density in the action integral of such theories one should choose some function L

depending on the variables (3.3):

L = L(x1, . . . , xn, T 1 ... 1
1 ... 1 [1], . . . , T n ... nn ... n [Q]). (17.5)

This means that L in (17.5) is an extended scalar field associated with some com-
posite tensor bundle N = T

r1... rQ
s1... sQM . If the whole scenario is performed in the

Minkowski space or in some space M equipped with a metric g and with some
connection Γ, then the differentiations introduced in the definition 12.2 and in the
definition 13.2 are applicable to L. On the other hand, if some particular configu-
ration of the fields T[1], . . . , T[Q] is given, then





T i1... irj1... js
[1] = T i1... irj1... js

[1](x1, . . . , xn), where r = r1, s = s1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T i1... irj1... js
[Q] = T i1... irj1... js

[Q](x1, . . . , xn), where r = rQ, s = sQ.

(17.6)

Substituting (17.6) into (17.5), we obtain

L̃ = L̃(x1, . . . , xn). (17.7)

The function L̃ in (17.7) represents a standard (not extended) scalar field. This
means that we can differentiate L in two ways: as an extended field in its original
form (17.4) and as a standard field upon substituting some particular fields (17.6)
into its arguments. The same is true for an arbitrary extended tensor field X.

Theorem 17.1. Let X be an extended tensor field of the type (α, β) associated with
a composite tensor bundle N = T

r1... rQ
s1... sQM and let T[1], . . . , T[Q] be some non-

extended tensor fields that determine some particular section q = q(p) of the bundle

N . Denote by X̃ the non-extended tensor field obtained from X by substituting
T[1], . . . , T[Q] into its arguments. Then

∇YX̃ = ∇YX +

Q∑

P=1

C(∇YT[P ] ⊗∇[P ]X), (17.8)

where Y is some non-extended vector field in M , ∇YX̃ is the standard covariant
differentiation1, ∇YX is the spacial covariant differentiation, and ∇YT[P ] is again
the standard covariant differentiation.

The equality (17.8) in the theorem 17.1 is a tensorial form of the well-known
chain rule for differentiating composite functions. Its proof is pure calculations.
First of all one should write the equality (17.8) in local coordinates. Here covariant

1 Writing covariant differentiations we assume that M is equipped with some connection Γ.
This can be either a standard connection or an extended connection. In the latter case it is
converted to the standard connection by means of the section q = q(p). In other words, one
should substitute (17.6) into the arguments of Γk

ij(x
1, . . . , xn, T 1 ... 1

1 ... 1 [1], . . . , T n ... n
n ... n [Q]).
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differentiations are replaced by covariant derivatives. As for the vector field Y, it
can be dropped at all. As a result (17.8) is written as

∇iX̃
i1... iα
j1... jβ

= ∇iX
i1... iα
j1... jβ

+

+

Q∑

P=1

n∑
...

n∑

h1, ... , hr

k1, ... , ks

∇iT
h1... hr

k1... ks
[P ] ∇k1... ks

h1... hr
[P ]X i1... iα

j1... jβ
.

(17.9)

The equality (17.9) is derived by direct calculations based on the formulas (13.15)
and (12.11). The equality (17.8) then is derived by multiplying both sides of (17.9)
by Y i and summing over the index i.
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