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MAGNETIZATION WAVES IN THE LANDAU-LIFSHITZ MODEL

R. F. Bikbaev and R. A. Sharipov1

Abstract. The solutions of the Landau-Lifshitz equation with finite-gap behavior
at infinity are considered. By means of the inverse scattering method the large-time

asymptotics is obtained.

1. The Landau-Lifshitz equation [1] describing the dynamics of the magnetiza-
tion vector S for the one-dimensional ferromagnet of the “light-plane” type can be
written in the following form:

(1) St = S × Sxx + S× JS, |S| = 1, J = diag(0, 0,−16ω2).

In [2, 3] equation (1) was shown to be completely integrable and it was represented
as a compatibility condition for the pair of linear equations

∂xΨ = UΨ, ∂tΨ = V Ψ(2)

with 2 × 2 matrices U and V of the form

U = −i

3
∑

α=1

Sα wα σα,

V = 2i

3
∑

α=1

w1 w2 w3

wα
Sα σα − i

3
∑

α=1

[S × Sx]α wα σα,

where σα are the Pauli matrices and w1 = w2 =
√

λ2 − ω2, w3 = λ. Soliton-like
solutions of (1) are well-known (see [4, 5]). The class of periodic and almost peri-
odic wave-like solutions of (1) contains an important subclass of algebro-geometric
(or finite-gap) solutions. They were constructed in [5, 6]. The study of algebro-
geometric solutions for integrable equations was initiated by Novikov in [7], it led
to the well-developed theory of finite-gap integration (see review [8]).

In this paper we study the large-time asymptotics for “nearly finite-gap solu-
tions” of the Landau-Lifshitz equation, i. e. the solutions S with the following
behavior as x → ±∞:

(3)
S(x, t) → S(x, t |Γ, D1, δ1), x → +∞,

S(x, t) → S(x, t |Γ, D2, δ2), x → −∞.

1http://www.geocities.com/CapeCanaveral/Lab/5341
http://www.bashedu.ru/sharipov
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Here S(x, t |Γ, δ) denotes a real smooth g-gap solution of (1) with a phase δ con-
structed on a base of the hyperelliptic Riemann surface Γ with a fixed divisor
D = P1 + . . . + Pg on it. Given the branching points

λ0 = −ω < λ1 < λ2 < . . . < λ2g < ω = λ2g+1

of Γ one can define the meromorphic function

Y =
√

(λ2 − ω2)(λ − λ1) · . . . · (λ − λ2g)

on Γ and the pair of infinity points P±
∞, with Y ∼ ±λg+1 as P → P±

∞. The
Riemann surface Γ consists of two sheets: Γ+ (upper sheet) and Γ− (lower sheet).
It admits of the hyperelliptic involution σ, which does interchange sheets, and the
antiholomorphic involution τ , (λ(τP ) = λ(P ), Y (τP ) = −Y (P )), which does
not. The boundary ∂Γ+ is a collection of g cycles γ1, . . . , γg and the cycle γ∞
passing through two infinity points P±

∞.

See in separate file: Bikb.gif.

Fig. 1.

Let us choose the canonical basis of cycles ai, bi, i = l, . . . , g on Γ as it is shown
on fig. 1. The finite-gap solution S(x, t |Γ, δ) then is given up to a phase shift by
explicit formulae in terms of Riemann θ-functions:

S1 =
C1C2 − C3C4

C3C2 − C1C4
, S2 = −i

C1C2 + C3C4

C3C2 − C1C4
, S3 =

C3C2 + C4C1

C3C2 − C1C4
,

Here

C1 = θ[n, 0](Ω + ∆ + z), C3 = θ(Ω + ∆ + z),

C2 = −θ[n, 0](Ω + ∆ − z), C4 = θ(Ω + ∆ − z),

n =
1

2
(1, 0, . . . , 0).

The change of phase δ is equivalent to the rotation of the vector S around the third
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coordinate axis. The vector ∆ is connected with the divisor by the Abel map

A : div(Γ) → Jac(Γ), Ai(P ) =

P
∫

λ0

ωi, P ∈ Γ,

according to the formula ∆ = −A(D) − K, where K is the vector of Riemann
constants. Real solutions S(x, t) corresponding to real divisors are determined by
the restrictions

(4) A(D) − A(τD) = A(λ0 + λ2g+1 − P+
∞ − P−

∞) = 0.

Vector Q = i(V (1)x − V (2)t) is composed of two vectors V (1) and V (2), being the
vectors b-periods of two normalized abelian differentials of the second kind with the
only poles at infinities P±

∞. These differentials have the following leading terms of
Laurent expansions at these points:

Ω(1) = ∓dλ + . . . , Ω(2) = ±4 λdλ + . . . .

Vector z ∈ Jac(Γ) is equal to A(P+
∞), the path of integration γ is shown on fig. 1.

The reality condition (4) defines 2g disjoint real tori Tν , ν = 0, . . . , 2g − 1 in
Jac(Γ). We choose only one of them: torus T0 with

Re[∆ + A(λ0)] = 0,

on which the θ-function θ(A(λ0) + Ω + ∆) does not vanish (see [9]). The main in-
strument in constructing finite-gap solutions is the matrix Baker-Akhiezer function

e(P ) =

∥

∥

∥

∥

∥

∥

e+
1 (P ) e+

1 (σP )

e+
2 (P ) e+

2 (σP )

∥

∥

∥

∥

∥

∥

solving equations (2). The first column of it is given up to a scalar multiples f1(x, t)
and f2(x, t) by formulas

(6)

e+
1 (P ) = f1 eiδ/2 θ(A(λ) + Ω + ∆)

θ(A(λ) + ∆)
exp



i

P
∫

λ0

(Ω(1)x + Ω(2)t)



 ,

e+
1 (P ) = f2 e−iδ/2 θ[n, 0](A(λ) + Ω + ∆)

θ(A(λ) + ∆)
exp



i

P
∫

λ0

(Ω(1)x + Ω(2)t)



 .

Multiples f1(x, t) and f2(x, t) are defined by fixing det e(P ) and by the condition
e1(λ0)/e2(λ2g+1) = eiδ.

Remark. The torus T0 is an exceptional real torus in the following sense: Baker-
Akhiezer function e(P, x, t) is non-singular bounded function in x, t for P ∈ ∂Γ+.
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2. In order to construct a scattering theory for S(x, t) of the form (3) let us define
the vectorial Jost functions Φ(P ) and Ψ(P ) solving (2) and having asymptotics

Φ(P ) → e+(P, D1, δ1) as x → +∞,

Ψ(P ) → e+(P, D2, δ2) as x → −∞.

The functions Φ, Ψ are bounded with each other by scattering data a(P ), b(P ):

(7) Φ(P ) = Ψ(P ) a(P ) + Ψ(σP )b(P ), P ∈ ∂Γ+.

In this paper we study the non-soliton case, i. e. a(P ) 6= 0, if P ∈ Γ+. Starting
from (7) we obtain a scattering theory for (1), (3) most similar to that of [10] for
the fast-decreasing case. The only difference consists in the existence of relations
between asymptotic divisors D1, D2, phases δ1, δ2 and scattering data a(P ), b(P ):

(8)

A(D2 − D1) =
1

2πi

∫

∂Γ+

ln |1 − r(P ) r(σP )|ω(P ),

δ1 − δ2 = −i ln

(

a(λ2g+1) + b(λ2g+1)

a(λ0) − b(λ0)

)

.

Here r(P ) = b(P )/a(P ) is the reflection coefficient. It should be pointed out that
for our choice of divisors D1 and D2 (i. e. torus T0) 1 − r(P ) r(σP ) is a real and
positive function on ∂Γ+.

For the asymptotical analysis of (1), (3) we use a singular integral equation
for Jost functions similar to that of [11]. Our method is a generalization of the
asymptotical construction of [12].

The final result of our investigation is the following: the main term of the asymp-
totics for S(x, t) as t → +∞ is given by the finite-gap solution

S(x, t) = S(x, t |D(ξ), δ(ξ)) + ε(ξ, t), ε(ξ, t) = o(1),

with the phase δ(ξ) and divisor D(ξ) depending on the “slow variable” ξ = x/t
according to

(10)

A(D(ξ)) = A(D2) −
1

2πi

∫

ℓ(ξ)

ln |1 − r(P ) r(σP )|ω(P ),

δ(ξ) = δ2 − i ln

(

Ã(λ2g+1)

Ã(λ0)

1 + r̃(λ2g+1)

1 − r̃(λ0)

)

.

Here the path of integration ℓ(ξ) is a part of the contour ∂Γ+ which is situated to
the left of the unique stationary point P0(ξ) (see fig. 1) defined by the condition

(

Ω(1)ξ + Ω(2)
)

P=P0

= 0.
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The function Ã(P ) is given by

Ã(P ) = lim
P ′→P

α(P ′), P ′ ∈ Γ+, P ∈ ∂Γ+,

α(P ) =
θ((A(P ) − A(D(ξ)) − K)

θ((A(P ) − A(D2) − K)
exp



− 1

2πi

∫

ℓ(ξ)

M(Q, P ) ln(1 − r(Q) r(σQ))



 ,

where M(Q, P ) is the multivalued Cauchy kernel (see [9]). The function r̃(P ) is
given by

r̃(P ) =

{

r(P ) for P ∈ ℓ(ξ),

0 for P /∈ ℓ(ξ).

The value of the rest term of asymptotics (9) depends on whether P0 ∈ ∂Γ+ or
not. In the first case ε = O(t−1/2), in the second case ε = o(t−N ) for any N > 0.
The scattering problem studied here describes the interaction of two magnetization
waves with the same spectrum Γ. After finishing all the “transition processes” two
interacting waves consolidate into one asymptotical wave (9) with slowly changing
phases.
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