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Abstract. Arguments for the universe being a 3D brane in a 4D bulk are given.

Einstein’s gravity equations are rewritten as dynamical equations for a 3D metric on
a 3D brane travelling in a 4D spacetime with a Big Bang.

1. Introduction.

The idea that our real universe is a 4D structure has deeply penetrated the brains
of scientists and ordinary people. However, is it true that this 4D structure as a
whole has its material being at each particular moment of time? Let’s study this

question on the basis of the principles of
general relativity and cosmology.

In Fig. 1.1 we see two observers in a 4D
spacetime and their trajectories, which
are called world lines (see [1] and § 6 in
Chapter II of [2]). Let’s call them Ob1

and Ob2. The observer Ob1, when pass-
ing through the point A of his life, can
think as follows: “I am at the point A and

I do exist. Therefore, the point A does ex-

ist. The points B and C do not exist right

now, since B is my future, while C is my

past. I know that I am not a unique ob-

server in the universe and the point A is

not a unique point of the universe. There

must be another observer, say Ob2, who coexists with me at some definite point A′

of his trajectory. The points B′ and C ′ cannot coexist with me right now, since the

point A′ does and since B′ is the future of A′, while C ′ is its past.”
The train of thoughts of the observer Ob1 leads to the conclusion that the 4D

spacetime is subdivided into mutually non-overlapping coexistence classes. How-
ever, these thoughts do not describe the classes completely, though they yield some
restrictions for them. The coexistence classes could be

1) smooth structures;
2) partially smooth structures;
3) fractal structures;
4) non-structured formations.
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We choose the option 2 and assume the coexistence classes to form a smooth foli-
ation of 3D hypersurfaces in the 4D spacetime (see [3]). The smoothness of them
can be broken at the points corresponding to black holes.

The coexistence classes in the form of 3D hypersurfaces represent successive
stages in the evolution of the universe. Only one of them comes to physical being
at each particular moment of time. This particular hypersurface, being the present
state of the 3D universe, is called the evolution front. All observers and all ma-
terial bodies and fields are enclosed in this evolution front and move together with
it along 4D spacetime, though each observer lives with its own pace of time accord-
ing to laws of Einstein’s relativity. As for the 4D spacetime, it is a mathematical
abstraction rather than a real physical structure.

The main goal of the present paper is to promote 4 = 3+1 approach in cosmology
as something more than just a mathematical trick for solving equations.

2. Light cone restriction for coexistence classes.

Let A be some point of the 4D spacetime and let H be its coexistence class (see
Fig. 1.1). Each point A of the spacetime is associated with two light cones. Their
walls are formed by light rays passing through the point A. Their interior can be
filled with world lines of massive particles passing through the point A. Therefore
none of the point from the interior and from the walls of these light cones can belong
to the class H. Thus we conclude that each coexistence class H is completely in
the exterior of light cones associated with each its point A. This is the light cone
restriction for coexistence classes.

According to our choice above, coexistence classes are smooth 3D hypersurfaces
at most points of them. At each of those points they have a normal vector n.
From the light cone restriction one easily derive that the normal vector n is in the
interior of the light cones. Hence the metric induced to coexistence hypersurfaces
is non-degenerate. We take it to be Riemannian (see [4]) and define two matrices

gij =

∥

∥

∥

∥

∥

∥

∥

g11 g12 g13

g21 g22 g23

g31 g32 g33

∥

∥

∥

∥

∥

∥

∥

, gij =

∥

∥

∥

∥

∥

∥

∥

g11 g12 g13

g21 g22 g23

g31 g32 g33

∥

∥

∥

∥

∥

∥

∥

(2.1)

that correspond to direct and inverse metric tensors.

3. Normal shift and comoving

coordinates. The concept of cosmic time.

Let’s consider our foliation of 3D hy-
persurfaces (coexistence classes). They
are rendered as green lines in Fig. 3.1.
Actually they form a dense family filling
the whole spacetime. Let’s mark normal
vectors of the unit length at each point of
each hypersurface. As a result we get a
smooth vector field n of unit vectors. In-
tegral curves of this vector field are ren-
dered in black in Fig. 3.1. These integral
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curves are perpendicular to hypersurfaces. Therefore we see the picture of a nor-
mal shift. This is the normal shift along integral curves of a first order dynamical
system. Other sorts of normal shift are considered in [5].

Integral curves of a vector field are parametric curves with some numeric param-
eter (see [6]). Let τ be such a numeric parameter for integral curves in Fig. 3.1.
If we choose some curvilinear coordinates x1, x2, x3 on some initial hypersurface
and complement them with one more coordinate x0 = τ , then we get a curvilin-
ear coordinate system in some neighborhood of the initial hypersurface in the 4D
spacetime. Coordinates constructed in such a way are called comoving coordi-

nates. An observer whose world line coincides with one of the integral curves of
the normal shift in Fig. 3.1 is called a comoving observer (see [7]).

Two points A and B of two hypersurfaces in Fig. 3.1 are connected by an integral
curve of the vector field n. The arc length of the segment [AB] of this curve is called
the orthogonal distance between two hypersurfaces at the point A (or at the point
B). In comoving coordinates we have

|AB| = x0

B

− x0

A

. (3.1)

A similar formula can be written for the points A′ and B′:

|A′B′| = x0

B′

− x0

A′

. (3.2)

The normal shift in Fig. 3.1 is called an equidistant normal shift if for any
two hypersurfaces the orthogonal distances (3.1) and (3.2) are equal to each other
for any two points A and A′ of one of them. Mathematically, not any normal
shift determined by a foliation of hypersurfaces is equidistant. However, here we
introduce a new physical postulate.

Postulate 3.1. Watches of any two comoving observers can be synchronized.

The normal shift in Fig. 3.1 occurs in the time direction. Indeed, normal vectors
to hypersurfaces, which are tangent to integral curves, are in the interior of light
cones. Therefore we can divide the distances (3.1) and (3.2) by the speed of light
and thus get time intervals for two comoving observers A and A′:

4tA =
|AB|

c
4tA′ =

|A′B′|

c
. (3.3)

Postulate 3.1 means that the time intervals (3.3) should be equal: 4tA = 4tA′ .
Hence we get |AB| = |A′B′| thus proving the following theorem.

Theorem 3.1. The normal shift associated with coexistence classes in cosmology

is always equidistant.

Using comoving coordinates x0, x1, x2, x3, one can introduce the time variable

t =
x0

c
. (3.4)

In the case of an equidistant normal shift the time variable (3.4) characterizes each
hypersurface as a whole. It is known as the cosmic time (see [8]).



4 RUSLAN SHARIPOV

4. The role of the Big Bang.

For defining the normal shift in Fig. 3.1 we used some initial hypersurface.
Therefore the time variable (3.4) is relative one. It is defined up to our choice
of an initial hypersurface. However, in many cosmological models the evolution

of the universe starts not from a hyper-
surface, but from a point. This point is
called the Big Bang (see [9]). If we in-
clude the Big Bang into our concept of
coexistence classes, then we would have
the initial coexistence class in the form
of one point of Big Bang. Other classes
would arise through the normal blow-

up of this point (see Fig. 4.1).
Like the normal shift in Fig. 3.1, the

normal blow-up in Fig. 4.1 is a normal
shift along integral curves of a first order

dynamical system. Other sorts of normal blow-up are considered in [10].
The use of the Big Bang as a reference point in defining the time variable (3.4)

makes its choice absolute. The value of this variable for the current epoch is known
as the current age of the universe. It is approximately 13.8 billion years ac-
cording to our present knowledge (see [11]).

5. Einstein’s equations of gravity in 3 + 1 presentation.

Einstein’s equations of gravity are derived for the four-dimensional spacetime
(see § 2 in Chapter V of [2]). They are written as follows:

rij −
r

2
Gij − Λ Gij =

8 π γ

c4
Tij. (5.1)

Here γ is Newton’s gravitational constant (see [12]):

γ ≈ 6.674 · 10−8 cm3 · g−1 · s−2

and c is the speed of light. Now, as a result of redefining other standard units in
2019, the speed of light c is defined as an exact physical constant (see [13]):

c = 2.99792458 · 1010 cm · s−1.

The constant Λ in (5.1) is the cosmological constant. It is associated with the dark
energy (see [14]). Its value is quite uncertain, but very close to zero (see [15]):

Λ ≈ 10−56 cm−2.

The term Tij in the right hand side of (5.1) stands for the matter including the
dark matter (see [16]) and the regular matter. It represent the components of a
symmetric tensor which is called the energy-momentum tensor (see [17]).

The term rij corresponds to the components of the Ricci tensor and r is the scalar
curvature1 (see § 8 in Chapter IV of [18]). Both of these two terms are expressed

1 We used lower case letters for rij and r in order to reserve capital letters for 3D Ricci tensor

and for 3D scalar curvature.
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through the components of the four-dimensional metric tensor Gij. In order to
express the equations (5.1) in 3 + 1 presentation we use comoving coordinates
x0, x1, x2, x3 with the cosmic time (3.4). In these coordinates the components of
the metric tensor Gij and the components of the inverse metric tensor Gij are given
by the following two matrices:

Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

, Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (5.2)

The quantities gij and gij are taken from (2.1). The metric (2.1) is assumed to be
Riemannian. Therefore the metric (5.2) is pseudo-Riemannian with the signature
(+ − −−). This metric produce the metric connection with the components

γk
ij =

1

2

3
∑

s=0

Gks

(

∂Gsj

∂xi
+

∂Gis

∂xj
−

∂Gij

∂xs

)

. (5.3)

It is easy to derive that
γk

ij = Γk
ij for 1 6 i, j, k 6 3, (5.4)

where Γk
ij are the components of the metric connection for the metric (2.1):

Γk
ij =

1

2

3
∑

s=1

gks

(

∂gsj

∂xi
+

∂gis

∂xj
−

∂gij

∂xs

)

. (5.5)

The rest of the components (5.3) are distributed as follows:

γ0

ij =
1

2

∂gij

∂x0
=

1

2 c

∂gij

∂t
=

ġij

2 c
for 1 6 i, j 6 3, (5.6)

γk
0j = γk

j0 =
1

2

3
∑

s=1

gks ∂gsj

∂x0
=

3
∑

s=1

gks γ0

sj for 1 6 k, j 6 3, (5.7)

γ
q
00

= γ0

q0 = γ0

0q = 0 for 0 6 q 6 3. (5.8)

The formulas (5.4), (5.6), (5.7), and (5.8) are easily derived from (5.3) with the use
of the formulas (5.2) and (5.5).

Note that the quantities (5.6), when restricted to a 3D hypersurface representing
some coexistence class, constitute the components of a symmetric tensor field. This
tensor field is usually denoted through b and is called the second quadratic form

of a hypersurface (see § 5 in Chapter IV of [18]). Its components are denoted through
bij. Raising one of two indices of the second quadratic form, we get

bk
j =

3
∑

s=1

gks bsj. (5.9)

The quantities (5.9) are also the components of a tensor field. This tensor field
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is denoted through the same letter b as the second quadratic form. Using the
quantities bij and bk

j , we can rewrite the formulas (5.6) and (5.7) as follows:

γ0

ij = bij for 1 6 i, j 6 3, (5.10)

γk
0j = γk

j 0 = bk
j for 1 6 k, j 6 3. (5.11)

The Ricci tensor in Einstein’s equations (5.1) is calculated through the curvature
tensor by means of the following formula (see § 8 in Chapter IV of [18]):

rij =

3
∑

k=0

rk
ikj, (5.12)

where the components of the curvature tensor are

rk
isj =

∂γk
ji

∂xs
−

∂γk
si

∂xj
+

3
∑

q=0

γk
sq γ

q
ji −

3
∑

q=0

γk
jq γ

q
si. (5.13)

Due to (5.12) in (5.13) we need only those terms where s = k:

rk
ikj =

∂γk
ji

∂xk
−

∂γk
ki

∂xj
+

3
∑

q=0

γk
kq γ

q
ji −

3
∑

q=0

γk
jq γ

q
ki. (5.14)

Applying (5.4), (5.10), and (5.11) to (5.14), we derive

rk
ikj = Rk

ikj + bk
k bij − bk

j bki for 1 6 i, j, k 6 3. (5.15)

Here Rk
ikj are the components of the 3D curvature tensor. They are given by a

formula similar to (5.13) upon setting s = k in it:

Rk
isj =

∂Γk
ji

∂xs
−

∂Γk
si

∂xj
+

3
∑

q=1

Γk
sq Γq

ji −

3
∑

q=1

Γk
jq Γq

si. (5.16)

The 3D Ricci tensor is derived from (5.16) by means of the formula

Rij =

3
∑

k=1

Rk
ikj, (5.17)

which is the 3D version of the formula (5.12).
Now let’s consider the case k = 0 and 1 6 i, j 6 3 in (5.14). In this case we have

r0

i0j =
∂γ0

ji

∂x0
−

∂γ0

0i

∂xj
+

3
∑

q=0

γ0

0q γ
q
ji −

3
∑

q=0

γ0

jq γ
q
0i. (5.18)

Applying (5.8), (5.10), and (5.11) to (5.18), we reduce this formula to

r0

i0j =
∂bji

∂x0
−

3
∑

q=1

bjq b
q
i for 1 6 i, j 6 3. (5.19)
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The next step is i = 0 and 1 6 j, k 6 3. in (5.14). In this case we have

rk
0kj =

∂bk
j

∂xk
−

∂bk
k

∂xj
+

3
∑

q=1

Γk
kq b

q
j −

3
∑

q=1

Γk
jq b

q
k. (5.20)

We add two terms to (5.20) and rearrange the terms in it:

rk
0kj =

∂bk
j

∂xk
+

3
∑

q=1

Γk
kq b

q
j −

3
∑

q=1

Γq
kj bk

q −
∂bk

k

∂xj
−

3
∑

q=1

Γk
jq b

q
k +

3
∑

q=1

Γq
jk bk

q .

Due to the symmetry Γq
kj = Γk

jq two extra terms that was added do cancel each
other. But they let us apply the concept of covariant derivatives to the above
formula (see § 6 in Chapter IV of [18]). As a result we obtain

rk
0kj = ∇k bk

j −∇j bk
k for 1 6 k, j 6 3. (5.21)

The case j = 0 and 1 6 i, k 6 3. in (5.14) is treated similarly:

rk
ik0

= ∇k bk
i −∇i bk

k for 1 6 k, j 6 3. (5.22)

Now we consider the cases i = 0 and k = 0 with 1 6 j 6 3 and j = 0 with k = 0
and 1 6 i 6 3 in (5.14). In these cases we have

r0

00j = 0, r0

i00 = 0. (5.23)

The next case is i = 0 and j = 0 with 1 6 k 6 3 in (5.14). In this case we have

rk
0k0

= −
∂bk

k

∂x0
−

3
∑

q=1

bk
q bq

k for 1 6 k 6 3. (5.24)

The last case is the case where i = 0, j = 0, and k = 0 in (5.14):

r0

000 = 0. (5.25)

Let’s apply (5.15) and (5.19) in order to calculate the components of the Ricci
tensor in (5.12). Taking into account (5.17) and the symmetry bij = bji, we derive

rij =
∂bij

∂x0
+ Rij +

3
∑

k=1

bk
k bij −

3
∑

k=1

(bki bk
j + bkj bk

i ) for 1 6 i, j 6 3. (5.26)

Then we apply (5.21), (5.22), and (5.23) to (5.12). This yields

ri0 =

3
∑

k=1

∇k bk
i −

3
∑

k=1

∇i bk
k for 1 6 i 6 3,

r0j =

3
∑

k=1

∇k bk
j −

3
∑

k=1

∇j bk
k for 1 6 j 6 3.

(5.27)

Note that the formulas (5.27) are consistent with the symmetry rij = rji.
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Finally we apply (5.24) and (5.25) to (5.12). As a result we get

r00 = −

3
∑

k=1

∂bk
k

∂x0
−

3
∑

k=1

3
∑

q=1

bk
q b

q
k. (5.28)

The four-dimensional scalar curvature r is calculated through the Ricci tensor
(5.12) by means of the formula

r =

3
∑

i=0

3
∑

j=0

rij Gij, (5.29)

see § 8 in Chapter IV of [18]. Applying (5.2), (5.26), and (5.28) to (5.29), we derive

r = −2

3
∑

k=1

∂bk
k

∂x0
− R −

3
∑

k=1

3
∑

q=1

bk
q b

q
k −

3
∑

k=1

3
∑

q=1

bk
k bq

q . (5.30)

Here R is the 3D scalar curvature given by a formula analogous to (5.29):

R =

3
∑

i=0

3
∑

j=0

Rij gij . (5.31)

Through Rij in the formula (5.31) we denote the components of the 3D Ricci tensor
given by the formula (5.17).

Now we are ready to rewrite Einstein’s equations (5.1) in 3 + 1 presentation.
They are subdivided into three groups. The first group is written as

∂bij

∂x0
−

3
∑

k=1

∂bk
k

∂x0
gij −

3
∑

k=1

(bki bk
j + bkj bk

i ) −
gij

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k −

−
gij

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

3
∑

k=1

bk
k bij + Rij −

R

2
gij + Λ gij =

8 π γ

c4
Tij,

(5.32)

where 1 6 i, j 6 3. The second group is written as

3
∑

k=1

∇k bk
j −

3
∑

k=1

∇j bk
k =

8 π γ

c4
T0j , (5.33)

where 1 6 j 6 3. The third group consists of one equation:

−
1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
R

2
− Λ =

8 π γ

c4
T00. (5.34)

The equations (5.32), (5.33), and (5.34) are derived by substituting (5.26), (5.27),
(5.28), and (5.30) into (5.1). Due to the symmetry of the tensors rij, Gij, and Tij

two expressions from (5.27) lead to the same equations (5.33).
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If we remember the relationship (3.4), then we can rewrite the equations (5.32)
in terms of the time derivatives with respect to the cosmic time:

ḃij

c
−

3
∑

k=1

ḃk
k

c
gij −

3
∑

k=1

(bki bk
j + bkj bk

i ) −
gij

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k −

−
gij

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
3

∑

k=1

bk
k bij + Rij −

R

2
gij + Λ gij =

8 π γ

c4
Tij ,

(5.35)

The equations (5.35) should be complemented with the following equations derived
from the equations (5.6) and (5.10):

ġij

2 c
= bij. (5.36)

The equations (5.35) and (5.36) constitute a system of two evolution equations for
two matrices gij(x

1, x2, x3, t) and bij(x
1, x2, x3, t). The equations (5.33) and (5.34)

are treated as auxiliary restrictions for solutions of the equations (5.35) and (5.36).

6. Conclusions.

The equations (5.35), (5.36), (5.33), (5.34) are derived in comoving coordinates
x0 = c t, x1, x2, x3. The matter is that they are not new. Similar calculations are
performed in § 97 of Chapter XI in [19], though the ultimate result is presented in a
form somewhat different from the equations (5.35), (5.36), (5.33), (5.34). In place
of comoving coordinates there the term synchronous reference system is used.

The main issue of the present paper is not in calculations, but in their interpre-
tation. The synchronous coordinates in [19] are treated as just coordinates only,
ones among many others. In contrast, comoving coordinates in the present paper
are associated with a 3D brane representing the state of physical being of the uni-
verse. The change of this state is described internally as the evolution of a 3D
metric according to the equations (5.35), (5.36), (5.33), (5.34). Externally it can be
understood as a motion of a 3D brane in a 4D spacetime. However the spacetime
should be considered as a theoretical construction, not a physical entity. Otherwise
it would mean fatalism since, being a physical entity, the spacetime would comprise
our past, our present, and our future simultaneously.

7. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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