RELATIVISTIC ELASTICITY IN THE
3D-BRANE UNIVERSE MODEL. PART 1.

RUSLAN SHARIPOV

ABSTRACT. 3D-brane universe model is the name of a new non-Einsteinian theory of
gravity. Within this theory general relativistic nonlinear elastic media are considered.
The effect of the relativistic contraction of solid bodies along the direction of their
motion known from Einstein’s theory is reproduced within the new theory.

1. INTRODUCTION.

Einstein’s special relativity and his general relativity both are based on the
concept of a four-dimensional spacetime which is also known as the block-universe,
see [1]. Unlike this, in the 3D-brane universe model the universe is an evolving three-
dimensional continuum. In order to maintain continuity with Einstein’s theory, the
evolution of this three-dimensional continuum is described as the motion of a 3D-
brane in a four-dimensional spacetime. However, unlike Einstein’s theory, in the
new theory the four-dimensional spacetime is not a physical continuum. It is just
a mathematical abstraction that has no physical existence.

The new theory of gravity that we follow in this paper has two versions. The
first version is developed using the so-called equidistance postulate (see e-prints
[2-7] and conference abstracts [8-12]). In the second version of the theory the
equidistance postulate is omitted (see e-prints [13-18] and conference abstracts
[19-26]). Therefore the second version is more general and we refer the reader to
it rather than to the first version. We also refer the reader to the book [27] where
the results of e-prints [13-16] are summarized.

There are two phenomena in Einstein’s theory of relativity. The first one is the
time dilation for moving observers (see [28]) and the second one is the contraction
of solid bodies along the direction of their motion (see [29]). The first phenomenon
was reproduced within the new theory in [18] using ticks of spring-mass systems as
timestamps. The goal of the present paper is to reproduce the second phenomenon
within this new theory whose name is 3D-brane universe model.

2. SOME PRELIMINARIES.

The spacetime of the standard Einstein’s general relativity is equipped with three
geometric structures: 1) the four-dimensional metric of the signature (+, —, —, —),
2) the orientation that distinguishes the right oriented coordinate systems from the
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left oriented ones, 3) the polarization that distinguished the future light cone from
the past light cone at each point (see §3 of Chapter IIT in [30]). In the 3D-brane
universe model the spacetime is equipped with the auxiliary geometric structure
4) the foliation of 3D-branes. It subdivides the whole spacetime into the union of
non-intersecting spacelike 3D-branes except for possibly one point that corresponds
to the Big Bang (see [13]). Each 3D-brane of this foliation represents some instan-
taneous state of the real three-dimensional universe in its evolution pathway. If we
assign some specific numeric value ¢ to each 3D-brane in the spacetime that grows
from the past to the future according to the polarization, we get a dedicated time
variable ¢ in the spacetime which is called a brane time.

Dedicated spacial coordinates x!, 22, 2% are also defined with the use of the the
foliation of 3D-branes in the spacetime. They are first chosen as local coordinates
in some particular 3D-brane. Then they are extended to other 3D-branes along in-
tegral curves of the vector field n of unit vectors normal to the branes. Coordinates
xt, 22, 23 introduced in this way are called spacial comoving coordinates. They are
usually complemented with the time coordinate

.IO = Cgr t, (21)

where ¢ is some brane time variable and cg, is a speed constant analogous to the
speed of light. There are several speed constants in the 3D-brane universe model:

Ccl; Cgra Cbr; Cnb- (22)
The first constant (2.2) is the regular speed of light (see [31]):
Cel = 299792458 m/s. (2.3)

Generally speaking, the speed of light is an experimentally measured constant that
should have an approximate value. However, in 1983 the 17th meeting of the
General Conference on Weights and Measures has redefined the value of one meter
in such a way that the speed of light has got its exact value (2.3). Since 1967 the
time unit of one second (see [32]) in (2.3) is defined to be exactly 9192631770 cycles
of the hyperfine structure transition frequency of caesium-133 atoms.

The second speed constant in (2.2) is the speed of gravity, the third constant is
the critical speed of baryonic matter, and the fourth constant is the critical speed
of non-baryonic dark matter. Actually dark matter can be subdivided into several
sorts each with its own critical speed.

In the standard Einstein’s relativity all of the speed constants (2.2) are equal
to each other. In the 3D-brane universe model they are potentially different. The
only equality established thus far is the following one:

Car = Chr. (2.4)

For the proof of the equality (2.4) see §4 of Chapter IV in the book [27]).
Spacial comoving coordinates x', 22, 3 complemented with the brane time co-

ordinate (2.1) form a complete set of coordinates in the four-dimensional spacetime

20 = Car T, z!, z?, x>, (2.5)
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In such coordinates (2.5) the four-dimensional metric of the four-dimensional space-
time takes the following block-diagonal form:

goo O 0 0
0 —g11 —g12 —913

2.6
0 —g21 —g22 —gos3 (2:6)
0 —gs1 —gs2 —gs3

The metric (2.6) comprises the scalar function
goo(t,$l,$2,$3), (27)
and the time-dependent three-dimensional metric with the components
_ 1,2 .3 .
g’LJ_g’LJ(ta':C a:C a‘r)a 1<’L?J<3 (28)

The positive scalar function (2.7) and the Riemannian metric (2.8) both describe the
gravitational field in the real three-dimensional universe. Here are the differential
equations for the scalar function (2.7) and for the metric (2.8):

A R 16m 5L
mat
—52217 b, +§Zzb bq+2900—1\900 1% g0 (2.9)
k=1q=1 k=1q=1 gr 900
—2
29000 (Zbkglj b; >900+gﬂzzg 913_5 5)qu900_
gr k=1g=1
Joo - L
_% Z > (9" 915 = 8F 57) Vi 900 Vi 900 + 900 (C— bij —
—1 g— gr
et (2.10)
3.1 . 3 3 3 i
=2 —bigy = > (Buadf b b = > D Hbi -
=1 Cer k=1 k=1q=1
3 3
gi R 167'["'}/ 5£mat
S Y] g S hy = 25
k=1g=1 cardoo %9
In (2.9) and (2.10) the following notations are used:
. 8900 gl i 1 891' i 1 891- i
_ b= Ji i 2% 2.11
Joo ot ’ J 2¢er 2cg Ot 2 0x0 ( )

Through V in (2.10) we denote covariant derivatives with respect to the metric
connection associated with the three-dimensional metric (2.8), R;; in (2.10) are the
components of the Ricci tensor associated with this metric and R in (2.9) and (2.10)
is the scalar curvature of this metric. Apart from (2.11), we see two constants A
and -y, where 7 is Newton’s gravitational constant (see [33]):

y& 6.674-107% cm® - gt - 52 (2.12)
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Through A in (2.9) and (2.10) we denote the cosmological constant
A~ —107°% cm™2. (2.13)

Unlike that of [34], we use the cosmological constant with negative sign. This is
done in order to fit notations used in the book [30]. Apart from (2.11), (2.12), and
(2.13), in (2.9) and (2.10) we see the function Ly and its variational derivatives

5£mat 5£mat
5900 ? 5gij :

(2.14)

The function L,,¢ in (2.14) is the Lagrangian density of matter. As matter in this
paper we choose a moving elastic solid medium.

3. RELATIVISTIC DEFORMATION TENSOR.

Assume that some solid medium was melt and frozen again in a three-dimensional
space with the coordinates y*, y2, y> and with the three-dimensional metric

nig =iyt y%v%), 1<4,5 <3 (3.1)

Then assume that this medium is immersed into the real universe which is described

by some comoving coordinates x!, 22, 23, some brane time ¢, the scalar function

(2.7), and the metric (2.8). The immersion is described by the functions

ot =2ty Py,

a? =2 (ty' v% ), (3.2)
2 =23ty % °).

The functions (3.2) are assumed to produce an invertible mapping whose inverse
mapping is given by similar three functions

yl (t7 'rl, $2, xs)’
y2(t7 $1,$2,$3)’ (3'3)
y

3(t, b, 22 2®).

yl
y2
y3

Differentiating the functions (3.2) with respect to the time variable ¢, we get the
components of the velocity vector v of our medium in the real universe:

T 'i: 8xi(taylay2ay3)

= 1<i<3. 3.4
v T 5t , 1 (3.4)

In order to express the components of the velocity vector v through the coordinates
x!, 2%, 23 in the real universe we need to substitute (3.3) into the arguments of the

functions (3.4). As a result we get three functions
vt =l (t 2t 2 a?),  1<i<3. (3.5)

The quantities (3.5) are interpreted as the components of the flow velocity vector
of our medium flow in the real universe (see [35]).
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Using (3.3), we can transfer the metric (3.1) to the real universe

3
_ dy" oy* .
Gz‘j—Zst@@, 1<i4,j<3. (3.6)

r=1s=1

In classical physics the metric (3.6) is the most comfortable metric for the medium.
This means that if g;; = G;;, then the immersion (3.2) does not produce any stress
in the medium. Therefore in classical physics the nonlinear deformation tensor is
defined by means of the following formula:

9ij — Gij

. (3.7)

Uij =
The formula (3.7) coincides with the formula (4.11) in [36].

Relativistic physics is different. Einstein’s theory of relativity predicts relativistic
contraction of moving rods along the direction of their motion. In order to maintain
continuity with Einstein’s theory we include this phenomenon into the 3D-brane
universe model. For this purpose we define the contraction operator with the matrix

i s U / |v|?
=0, — 1- . .
Cj=9; |v|2 ( goo — 0—12)r ) (3.8)

Through 6/ here we denote the Kronecker delta (see [37]). The inverse operator to
(3.8) is the relativistic extension operator. Its matrix is given by the formula

) R TRY 1
Ei=¢_-—2 (1 - ——— . .
=% [v[? ( [v|? ) (39

goo — —»
Cor

Now we apply the operator (3.9) to the metric (2.8) for to produce a new metric:
3 3
Gii=3. Elg.Ej, 1<i,j<3. (3.10)
r=1s=1
The metric (3.10) is used in the following formula:

f.__G.
Uij = i g 5 2

(3.11)

The formula (3.11) is analogous to the classical formula (3.7). It defines the rela-
tivistic deformation tensor.

4. DEFORMATION-FREE STEADY FLOW.

The term steady flow means a time independent non-changing flow. Here we
consider a flow with constant velocity v in (3.4):

v' =const, 1<i<3. (4.1)
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Then we choose flat spaces with the following data in (2.7), (2.8), and (3.1):

goo = 1, Gij = Mij = Oij- (4.2)

Through §;; in (4.2) we again denote the Kronecker delta (see [37]). Applying (4.1)
to (3.4), we derive the following formula for the immersion functions (3.2):

ot =o' t+ 2y YY), (4.3)
A deformation-free flow means that u;; = 0 in (3.11). From u;; = 0 we derive
gij = Gij (4.4)
Applying (4.2), (3.6), and (3.10) to (4.4), we get the equalities

3 oy ay° 3 3 ) )
Z Z oxt Ors Oxd = Z ZE1 Ors Ej- (4.5)
r=1 s=1

r=1s=1

The equalities (4.5) can be satisfied identically if we set

The equalities (4.6) constitute a system of partial differential equations. These
differential equations are consistent since
O’y OE]
0xi0xd  Oxd

B OE7 B 0%y

=0= Oxt  Oxidxt’

Moreover, the equations (4.6) are easily solvable:

3
v =Y E[ 2"+ E"(t,v). (4.7)

=1

Applying the operator (3.8) to both sides of (4.7), we get

3
et =% Oy~
r=1

Comparing (4.8) with (4.3), we can write

3
CIE"(t,v). (4.8)
1

3
at =0ty Cly + (4.9)
r=1

where z{ = const. The relationships (4.9) are explicit forms of the immersion
formulas (3.2) for a deformation-free steady flow. The term with the operator
(3.8) in the right hand side of (4.9) means that the immersion (4.9) performs the
relativistic contraction of a medium along the direction of the velocity vector v
with the constant components (4.1).
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5. DIFFERENTIAL EQUATION FOR THE REST MASS DENSITY.

Let’s return to the solid medium that was melt and then frozen again in a three-
dimensional space with the coordinates y', %, ¥ and with the three-dimensional
metric (3.1). This medium is at rest in that space. Let

po(y', v%, v (5.1)

be its rest mass density. Upon being immersed into the real three-dimensional
universe with the coordinates ', 22, 3 and the three-dimensional metric (2.8) our
medium gets a new rest mass density

plt, xt, 2 2%). (5.2)

The arguments of the functions (5.1) and (5.2) are related to each other through
the formulas (3.2) and (3.3). Let Q(y) be some domain in the space with the
coordinates y', y2, y3 and let Q(x) be its image under the mapping (3.2) for some
fixed value of t. Then by definition we have the following integral relationship:

[ Vaetndty = [ aergdca. (5.3)
Q(y) Q(=)
Taking into account (3.6), we can transform the left integral (5.3) as follows:
/po\/Mdg’y:/po\/c?tn|detJ|d3x:/pO\/Md3x. (5.4)
Q(y) Q(x) Q=)
Here J is the Jacobian matrix (see [38]) with the components

oy’

Jj= 55 (5.5)
Comparing (5.3) and (5.4) we derive the formula
Vdet G
p=plt,a", 2% a%) = py ~= (5.6)

:

det g’

The time variable ¢ is complementary to the spacial variables 3!, %, ¥® in (3.2)
and the same time variable ¢ is complementary to the spacial variables z!, x2, z3 in
(3.3). For the sake of convenience in further calculations we introduce the second

time variable 7 = ¢ and write (3.2) and (3.3) as follows:

t=r, T =1,
' =2y PP,
2

yl (t7 $1,$2,$3)7
® =22(r,y", v %), y?
y3

yl
y2(t7 ':Cla $25 ‘Ig)a
y3

(t7 'rl’ 'r2’ 'IB)'

(5.7)

® =23(r, v, 2 %),

From now on we assume 7 to be complementary to the variables y!, 32, y* and t to
be complementary to the variables x*, 22, x3. The formula (3.4) for the components
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of the velocity vector v then is rewritten as
_ _ az (1, y', 2,
o =iyt o) = ZAD ) %Ty ) oaciss,

(5.8)

while the formula (3.5) remains unchanged

The density p in (5.2) and (5.6) is a function in the real universe. Its arguments
are t,x!, 22 3. We shall use (5.6) in order to calculate the time derivative of the
density (5.2). However, before doing it we calculate the following divergency:

3
\/det ) (5.9)

div(pv)zzv (pv") \/CWZ

In deriving (5.9) we used the formula (4.7) from Chapter IV in [30]. Applying the

div(pv) = po v Vdet G) (5.10)
\/detg — ox”

The formula (5.10) can be rewritten as follows

> T(?po det G)

v

formula (5.6) to the formula (5.9), we derive

3
&CT. (5.11)

1

div(pv) = Jdeis
r=1

Applying the formula (5.8) to the last term in (5.11), we derive

B 3 3 82xr 8ym B
= 18:6’” ;mzl 3:6’” _;; dym or dxr ( )
- T 5.12

22" Oy o~ D [ Oz Dy
_Zzﬁ(ay ) -

3
=22 ordy™ dur L

the Jacobian matrix with the components

Let’s denote through M
8 T
’ (5.13)

M =

The matrix M with the components (5.13) is inverse to the matrix J with the

components (5.5). Therefore (5.12) is rewritten as
oM

- . .14

3:0’“ ) (5.14)

o ZZ meit(Mil.(?T

The next step is to apply Jacobi’s formula for differentiating determinants (see [39])

to the right hand side of (5.14). This yields
o ., OM 1 O(det M)

—tr (Mt 22 = — 7, 1
< Gar w(M7T0) = o (5.15)
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Due to (5.15) the formula (5.11) ultimately transforms to

1 23: ~9po \/detG)+ p  O(det M)

5.16
Vdet g &~ ! det M or (5.16)

div(pv) =

Now, as we planned above, using (5.6), we calculate the partial derivative

dp 1 9(po Vdet G) p  O(detg)

ot~ \J/detg ot ~ 2detg Ot (5.17)

The second term in the right hand side of (5.17) is similar to the second term in
the right hand side of (5.16). Again, applying Jacobi’s formula for differentiating
determinants (see [39]) and taking into account (2.11), we derive

0 1 9(po Vdet G)
P _ ( Cgrpzbk

o 5.18
ot det g ot (5.18)
The next step is to add two formulas (5.16) and (5.18). This yields
dp
MR | det G
2 +div(pv) = —det ((%—i-z ) o Vdet G) +
(5.19)
p  O(det M) &
—— — by
det M Ot “ p]; b
Using (5.7) and (5.8), one can easily derive that
0 ., 0
= — " . 2
o +;v oo (5.20)
Then, applying (5.20) to (5.19), we get
1 vd
9 +div(pv) = Npo Vdet G) +
ot det g 87'
O(det M) (5.21)
P € k
det M or " Cerf Z bk
From (3.6) and (5.5) we derive the following relationship for determinants:
det G = det n (det J)?. (5.22)

Actually we have already used the relationship (5.22) in (5.4). Now we apply it
once more in order to transform (5.21). It yields

1 9(poVdetG) 1 9(po+/detn)
det g or - /detg or

p  0O|det J|
|det J|  Or

| det J| + (5.23)
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Note that pg in (5.1) and the components of the matrix n in (3.1) depend on
yt, y?, 3, but they do not depend on 7. Therefore (5.23) reduces to

1 9(po vdetG) p  0O|detJ]|

Vdet g or ~|detJ| Or

The right hand side of (5.24) and the second term in the right hand side of (5.21)
both comprise logarithmic derivatives. Therefore, applying (5.24) to (5.21), we get

(5.24)

op . d1n(| det M| - | det J|) &
o +div(pv) =p 5 - cgrpz by. (5.25)

k=1

The Jacobian matrices J and M with the components (5.5) and (5.13) are inverse
to each other. Therefore we have the equality

|det M| - | det J| = 1. (5.26)

Applying the equality (5.26) to the equality (5.25), we derive the following differ-
ential equation for the rest mass density p in (5.2) and (5.6):

E-Fchrpbz—i-ZVi(pvi) =0. (5.27)

The differential equation (5.27) is similar to the differential equation (5.23) in [16]
expressing the total energy conservation law (see also §8 of Chapter III in [27]).
Like (5.23) in [16], the equation (5.27) can be transformed to an integral equation:

3
%/p\/detg d3x+/2pvinidS:0. (5.28)

Q an =1

Here € is some domain in the real three-dimensional universe, 02 is its boundary,
ni, ng, ng are covariant components of the unit normal vector n perpendicular
to the boundary 02, and dS is the infinitesimal area element of this boundary.
The integral equation (5.28) expresses the rest mass conservation law which is
formulated in the following theorem.

Theorem 5.1. The increment of the total rest mass of an elastic medium per unit
time in a closed 3D-domain 2 is equal to the rest mass supplied to the domain per
unit time through its boundary 0.

The equation (5.27) is a purely kinematic equation. It is derived without using
any dynamic properties of an elastic medium.
6. LAGRANGIAN OF A RELATIVISTIC ELASTIC SOLID MEDIUM.

The elastic energy of a deformed elastic solid medium is written as the integral
of its density in the real universe:

F = /]:\/detg d*z. (6.1)
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The density of the elastic energy F in (6.1) depends on the properties of a medium.
These properties are initially referred to points of the static space with the co-
ordinates y', y2, y3. They are transferred to the real universe by means of the
immersion mapping (3.2), which is written as (5.7), and by means of the Jacobian
matrix J with the components (5.5). The immersion (5.7) produces deformation of
a medium which is the main source of the elastic energy. Therefore F depends on
the deformation tensor u with the components (3.11). For a relativistic medium it
can also depend on the velocity vector v with the components (3.5) directly. As a
result we write the following formula for F:

F=F(y,J,v,u). (6.2)

Here y symbolizes a point of the static space with the coordinates y*, y2, y3.
The action of the elastic solid matter is the time integral of its Lagrangian, while
its Lagrangian is the spacial integral of its Lagrangian density:

Smat - /Lmat dt, Lmat = /Emat 1/ detg dgfb. (63)

Using (6.1) and (6.2), we write the Lagrangian density Lat as follows:

2

v
Linat = —p i \| oo — |cT| = F(y, J;v,u). (6.4)

br

Note that in (6.4) we see the third speed constant cp, from (2.2). Due to (2.4) it

coincides with the second speed constant cg, from (2.2), which is used in (5.27).

However, if we consider a non-baryonic elastic medium, i.e. made of dark matter,

then the constant ¢,y should be replaced by the fourth constant ¢y, from (2.2).

7. DIFFERENTIAL EQUATIONS FOR THE
DYNAMICS OF A RELATIVISTIC SOLID MEDIUM.

Differential equations in Lagrangian theories are derived by applying the sta-
tionary action principle to action integrals (see [40]). For the dynamic variables in
(6.3) and (6.4) we choose the functions from (3.3) and their time derivatives

wi:yi:T, I<i<3. (7.1)
In terms of the variables 3!, v2, y3, w!, w?, w3 the Euler-Lagrange equations (see

[41]) associated with the action integral (6.3) are written as follows:

—% (Mmat )g&g — Car (M)g&g ;31 be + (Mm“ )gtff =0. (7.2)

ow? ow? oyt

The equations (7.2) constitute a version of the equations (3.10) from [14]. The next
step is to write the equations (7.2) in a more explicit form.

The components of the velocity vector (3.5) are used in (6.4). They are expressed
through the functions (7.1) by means of the following formula:

3
vt = —ZM; w'. (7.3)
r=1
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The formula (7.3) is easily derived with the use of (5.7), (5.8), and (5.13). Apart
from the velocity vector v, in (6.4) we see the rest mass density (5.2). This function
is determined by the formula (5.6). The constituent parts of the right hand side of
(5.6) depend on the functions y', 2, ¥® and their spacial derivatives. But they do
not depend on the components of the velocity vector v. Therefore
op
o

Let’s denote through K the first summand in the right hand side of (6.4). Then
K:/K\/detgdgaz, F:/}'\/detgd?’x,

_ 2 v[? _
K__pcbr goo — 02 ) Emat—lc—j:.
b

T

(7.4)

(7.5)

The expression for K in (7.5) has no spacial derivatives of the functions (3.5). There-
fore its variational derivatives with respect to w’ coincide with partial derivatives.
Applying (7.3), we derive the following formula:

5K oK 30K
() = B = —2 gy M (7.6)

b,y

Then, applying (7.5) to (7.6) and taking into account (7.4), we get

5K L pu, MT
—gig =) ——m——- (7.7)

T Pl

oo — 5

Chr

The next step is to calculate the variational derivative of I with respect to the
dynamic variables y!, 32, y3. For this purpose we consider their small variations

where ¢ — 0 and hi(t,x!, 22, 2%) are arbitrary smooth functions with compact
support (see [42]). The variational derivative of K is defined through the formula

3
IA(:K—Fs/Z(g—;S)ngyghi\/detg &+ ... (7.9)
i=1 w

Note that the components of the velocity vector v in (7.3) depend on 3!, 42, 3
through M!. Despite the equality (7.1) the quantities w', w?, w? are treated as
independent variables not sensitive to the variations (7.8). Therefore, applying

(7.8) to (7.3), we get the following relationship:
. 3 A .
ot == Miw. (7.10)
r=1

Now let’s recall that the Jacobian matrix M isAinverse to the Jacobian matrix J with
the components (5.5). Therefore the matrix M in (7.10) is obtained by substituting
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9, 92, 92 for y', 2, ¥3 in the inverse matrix J~!. This yields

- & O
Mg:Mg—sZZMgangﬁjL.... (7.11)

m=1n=1

Note that ', 42, > are coordinates in the static space, not in the real universe.
Therefore the upper index ¢ in (7.8) and the upper index m in (7.11) both are not
tensorial indices. Hence we can write (7.11) as follows:

3 3
Mi=M—eY > M, Vh™ M+ ... (7.12)

m=1n=1

A similar expression is available for the Jacobian matrix J in (5.5):
Ji=Jj+eVh' +.... (7.13)
Applying (7.12) to the formula (7.10), we derive

3 3
it=vt—e Y Y ML Vahm (7.14)

m=1n=1

Now let’s proceed to the rest mass density in (5.6). Applying (5.22) to (5.6), we
derive the following formula for the density p:

Vet
p=PVERT et . (7.15)
Vdet g

From (7.13), applying Jacobi’s formula for differentiating determinants (see [39]),
we derive a formula for the determinant det J:

3 3
detj_detJ(HsZZM,’;vnhm>+.... (7.16)

m=1n=1

Due to (2.8) the denominator of the fraction in (7.15) does not depend on y*, 42, y>.
It remains unchanged when applying (7.8) to (7.15). Due to (3.1) and (5.1) the
numerator of the fraction in (7.15) is a function of y', 2, ¥®. Therefore

3
) . — Za Vaetn) .,
m=1

3

Due to (5.7) we can interpret pp and detn in (7.17) as functions of z!, 2%, 23 and

t. Therefore we can write the formula (7.17) as

3 3
po\/det) = po\/detn +e > Y Vi(po\/detn) M ™ + ... (7.18)

m=1n=1

It is easy to see that the right hand sides of the formulas (7.16) and (7.18) are
rather similar. We are going to combine these formulas by multiplying their left
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hand sides. Upon doing it we obtain the following formula:
po \/det A | det J| = po v/det n| det J| -
n(po /ety h™ (7.19)
(1+EZZM" c )>+....

detn

m=1n=1

Then we divide both sides of the equality (7.19) by v/det g and take into account
that det g = det g. As a result we derive the formula

5= p(1+sZZM" n( Viztt h>>+.... (7.20)

m=1n=1

Due to (7.15) the formula (7.20) can be rewritten as

n Va(h™ py/detg/|det J|)
(1+EZZM oot/ det ] >+ (7.21)

m=1n=1

Now we proceed to the square root factor in the third formula (7.5). Applying
(7.14) to this square root factor, we derive

/ v|? v|?
C%r goo — % :C%r 900_%"'
br

+EZZZ—“M Vb (7.22)

2

v

1=1 m=1n=1 900—|2|
Cor

Due to (7.21) and (7.22) the integral defining the variational derivative in the
formula (7.9) subdivides into the sum of two integrals:

3
/Z(g—;f)gygyg hi/detg &z = I + L. (7.23)
i=1 b,w

These two integrals I; and I are written as follows:

h'py/detg/|det J|)
/z}nzl \/Wﬂdetj\

2
A%
! C%r \/ goo — |02| V detg dg'ra
br

U, MV, hio™
P Vit 729

1=1 m=1n=1

(7.24)

goo — —5—
br

Both integrals (7.24) and (7.25) comprise spacial derivatives of the functions h?
from (7.8). In order to remove these spacial derivatives both integrals Iy and I
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should be transformed by means of integration by parts:

[v|?

2
M i\ Goo— —3 )

= [y <M/|dewbr

i=1 n=1

-py/det g/| det J| ' \/det g d*x,

I, = /ZZZV (%)”Wﬁ (7.27)
o

(7.26)

1=1 m=1n=1
br
Now we can apply (7.26) and (7.27) to (7.23). This yields

n [v|?
5y oo sro (VR
—Jgse=> Va - t t.J
(5 )z = 2V \—rgraerar ) V/aeto/ det 1+ .
LS P Uy M™ 0" 72
DI
m=1n=1 < |V|2>
goo — —5—
Cor

Assume for a while that we have an elastic medium with zero elastic response.
For such a medium F = 0 and the the equations (7.2) reduce to

2 (B )os — o (3 iﬂ( ST
Y g=1

b,y

When calculating the time derivative in (7.29) due to (7.7) we shall have to calculate
the time derivative of the Jacobian matrix (5.13):

82? ==> Y My 0 M™. (7.30)

The equality (7.30) follows from the equality M = J~!. Applying the formulas
(5.5) and (7.1) to the equality (7.30), we derive

, 3 3
8M =30 MVt M (7.31)
m=1n=1

The following formula expresses w™ through the components of the velocity vector:
3
w' ==Y Jr . (7.32)
=1
The formula (7.32) is derived from (7.3). Applying it to (7.31), we get

3 3
g=1m=1

3
M}V g JI v M™ + Z V" M™. (7.33)
1

n=
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Note that |det J| = £detJ = (£1) - detJ. The constant factor +1 can be
removed from (7.28). Then the formula (7.28) can be written as

5/c) > ( |2>
(—i pciy V goo— —— | M" +
s )i = 2 b Vnl 0=
3
v/ _ v 2M - = 2
+;pcbr goo C%r (V i 9 detg i +

V. (det J) LA P Uy U™ (7.34)
— M" E E —_—— V, M —
i det J ' ) +m:1 n=1 |V|2 '
goo — —35—
Cor

Now let’s calculate some terms from (7.34). We start with V,,M™:

o OMI S s NASS g 098
VaM" = =L +Zr Mp = ;;Mr o Mi+
3 3 3 3 3
Zrm M =="3"M"V,JI M=) NS M (7.35)
r=1s=1 g=1r=1s=1
3 3
T4, JrM; + Zrm M ==Y "> "M"V,.J] M.
r=1s=1

Here I'". are connection components of the metric connection associated with the

metric (2.8) in the real universe. The covariant derivatives in (7.33) and (7.35) are
calculated with the use of these connection components. From (7.35) we derive

3
V.M, Z MV, J" M. (7.36)

HMOJ

For the term with det g in (7.34) we get

Va(detg) 1 O(detg) i i e 09rs

detg ~ detg Oan o ox™
3 3 3 3 3 (737)
= Zzgm Vingrs +Zzzrgwgqsgm +ZZZ hs9rq g’
r=1 s=1 g=1r=1s=1 g=1r=1s=1

In (7.37) we used Jacobi’s formula for differentiating determinants (see [39]). If we
take into account V,grs = 0 (see §7 of Chapter III in [43]), then (7.37) reduces to

Vo detg
=2 I‘S .
—detg Z (7.38)
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The next is the term with det J in (7.34). For this term we derive

3

Va(detJ) 1 (detJ) :iiMr 0J; :ZiM’“aner

detJ — detJ Oz ‘ S Oxn ==
(7.39)

+23:23223: MJ;M’”fZZM’”V JS + Zr

r=1 s=1

g=1r=1s=1
Applying (7.35), (7.36), (7.38), and (7.39) to (7.34), we get the relationship
3 2
v
) :Z Py V ( 900-%)”11‘"—
Cor

3 3
[v|?

SN k- o (Mf VLI M M VI M) -

n=1r=1s=1 br

3 3 3 3
m U 7.40
DR RIS (740)
_ 1 e — V
m=1n=1r=1 s=1 900 — 2
Cor

3 3 n
Um U
+§ E Vi LQ M.
m=1n=1 |V|
\l goo — —»
Chy

Now, using the symmetry of the connection components I'?, = I'? _, we derive
82yr 82yr
V) = re Jr= e Jr=V,J.. 7.41
n 8$58$n+z sn q " Or S+Z ns q s ( )

In deriving (7.41) we used (5.5). Applying (7.41) to (7.40), we obtain

0 2
(55‘)95?{5 =D Pt Va (W) M —

n=1
3 3 3 3 S
SN A M LT M
m=1n=1r=1 s=1 _ |V| (742)
goo 2
br
3 3 v v
2V [ | M
m=1n=1 |V|
gOO D)

Now we proceed to the time derivative in (7.29). Differentiating (7.7), we get

oMr

0 5.0 P Uy - 5 P Uy
_8t(5w1) Za_< |V|2>Mi +Z; vz ot
- goo = "5~ = goo— "5~

br br

(7.43)
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Then we apply (7.33) to (7.43). This yields

9 16K °. 0 Py
8t(5wl)gg;”{f 2 8t< |V|2> it
Cbr (7.44)

[s m M 3pv7“ 7: mnq Zn
+Zzpv " |2 +ZZZZ q )

r=1m=1 =
goo — —2 goo — —5—
Cor Cor

Now we can substitute (7.44), (7.42), and (7.7) into the equation (7.29). In doing
it we find that due to the symmetry (7.41) the last term in the right hand side of
(7.44) and the second term in the right hand side of (7.42) do cancel each other.
As a result we get the following equation:

— v|? — A%

n=1 900 — |02| n=1m=1 900 |02|

br br

3 3 3 3

PUm Vo™ M v
DD IE LR A A (T U
n=1m=1 |V| n=1 Chr :

goo — —5
Cor

Note that the components of the matrix M enter each term of (7.45) in the same
way. This matrix is non-degenerate. Therefore we can remove it from (7.45) at all.
Moreover, we can calculate the covariant derivative in the fourth term of (7.45):

3
Va (\/ goo — ) ngoo 7%1 V™
|v|2 Cbr m:1 lv|?
goo — —5— goo — —5—
Cbr

Applying (7.46) to (7.45) and removing the components of the matrix M, we get

(7.46)

A =t e
goo 2 00~ "3
5 br X brv (7.47)
PURV P Chr Vngoo
+ Vv = ——

mzzl ’”( |v|2> 2 [
goo — 2 -2

br br

The equation (7.47) is analogous to the equation (5.27): the first term of (7.47) is
an analog of the first term in (5.27), the second term of (7.47) is an analog of the
second term in (5.27), the third term of (7.47) is an analog of the third term in
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(5.27). The term in the right hand side of (7.47) has no analogs in (5.27). However
it has an analog in the right hand side of the equation (3.6) in [15].

The equation (7.47) is analogous to the equation (5.6) in [36]. This analogy can
be strengthened if we introduce the following notations:

m
P = ’”’"| : " = f”’"“| > (7.48)
A% v
goo — —5 - goo — —5
Chr Chr

The quantities p,, in (7.48) are interpreted as the components of the momentum
density covector. The quantities II7* in (7.48) are interpreted as the components of
the momentum flow density tensor. In terms of the quantities introduced in (7.48)
the equation (7.47) is written as follows:

8p" + Z Car Pn bY + Z Vo7 = (7.49)

The quantities f,, in (7.49) are given by the formula

l pC%r VHQOO

2 V2
goo C%

T

fn=— (7.50)

The quantities (7.50) are interpreted as the components of the bulk gravitational
forces density vector arising due to the gradient of the gravitational field. The main
result of this section is presented by the following theorem.

Theorem 7.1. The dynamics of a relativistic elastic medium with zero elastic
response is described by the equation (7.49) complemented with the equation (5.27).

The above equation (7.49) is similar to the equation (5.2) in [36].
If the elastic response of a medium is nonzero, then we shall have one more term
in the right hand side of the equation (7.49):

Opn
p +chrpnbk+2v 0" = f, + Fn. (7.51)

The quantities F,, in (7.51) are given by the formula

3

Z( 8t(5w1)99g Cr(”)gng ( )ggg>J;. (7.52)

The formula (7.52) is derived from the Euler-Lagrange equation (7.2) by applying
the last formula (7.5). Now we can formulate the following theorem.

Theorem 7.2. The dynamics of a general relativistic elastic medium s described
by the equation (7.51) complemented with the equation (5.27).

Through F in (7.52) we denote the function (6.2). In this paper we do not
consider any specific forms of this function. This will be done in a separate paper.
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8. CONCLUDING REMARKS.

The main results of the present paper are Theorem 5.1, Theorem 7.1, Theo-
rem 7.2, and the formula (3.11) for the relativistic nonlinear deformation tensor
that generalizes the classical formula (3.7). The formula (3.11) takes into account
the relativistic contraction of solid bodies along the direction of their motion and
reproduces this phenomenon in the framework of the 3D-brane universe model in
the form of a deformation-free steady flow considered in section 4 above.

Note that throughout this paper we see the speed constant cy,,.. This means that
we deal with regular baryonic matter. In the case of non-baryonic dark matter,
provided this matter is able to form condensed media, we would have to replace c,
with the other constant cyp, from (2.2).

6. DEDICATORY.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.

REFERENCES

1. Eternalism (philosophy of time), Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

2. Sharipov R. A., A three-dimensional brane universe in a four-dimensional spacetime with a
Big Bang, e-print viXra:2207.0173.

3. Sharipov R. A., Lagrangian approach to deriving the gravity equations for a 3D-brane uni-
verse, e-print viXra:2301.0033.

4. Sharipov R. A., Hamiltonian approach to deriving the gravity equations for a 3D-brane uni-
verse, e-print viXra:2302.0120.

5. Sharipov R. A., Energy conservation law for the gravitational field in a 3D-brane universe,
e-print viXra:2303.0123.

6. Sharipov R. A., Speed of gravity can be different from the speed of light, e-print viXra:23
04.0225.

7. Sharipov R. A., On superluminal non-baryonic matter in a 3D-brane universe, e-print viXra:
2305.0113.

8. Sharipov R. A., On the dynamics of a 38D universe in a 4D spacetime, Conference abstracts
book “Ufa autumn mathematical school 2022” (Fazullin Z. Yu., ed.), vol. 2, pp. 279-281; DOI:
10.33184 /mnkuomsh2t-2022-09-28.104.

9. Sharipov R. A., The universe as a 3D brane and the equations for it, Conference abstracts
book “Foundamental mathematics and its applications in natural sciences 2022” (Gabdrakh-
manova L. A., ed.), p. 37; DOI: 10.33184/fmpve2022-2022-10-19.30.

10. Sharipov R. A., The universe as a 3D-brane and the gravity field in it, Conference abstracts
book “Complex analysis, mathematical physics, and nonlinear equations”, March 13-17, Lake
Bannoe 2023 (Garifullin R. N., ed.), pp. 129-130.

11. Sharipov R. A., The universe as a 3D-brane and its evolution, Conference abstracts book of
the second all Russia youth conference “Modern physics, mathematics, digital and nanotech-
nologies in science and education (P MITH-23)” dedicated to 80th anniversary of Prof. R. S. Si-
nagatullin, April 18-20, Ufa 2023 (Vasilyeva L. I., Kudasheva E. G., Kudinov I. V., Iz-
mailov R. N., Kosarev N. F., Gess D-L. Z., eds.), pp. 142-143.

12. Sharipov R. A., The universe as a 3D-brane and the equation of its evolution, Conference
abstracts book of the ninth interregional school-conference of students and young scientists
“Theoretical and experimental studies of nonlinear processes in condensed media”, April 26-
27, Ufa 2023 (Zakiryanov F. K., Gabdrakhmanova L. A.; Kharisov A. T., eds.), p. 16.

13. Sharipov R. A., 8D-brane gravity without equidistance postulate, e-print viXra:2306.0104.

14. Sharipov R. A., Lagrangian approach to deriving the gravity equations in a 3D-brane universe
without equidistance postulate, e-print viXra:2307.0039.

15. Sharipov R. A., Superluminal non-baryonic particles in a 8D-brane universe without equidis-
tance postulate, e-print viXra:2307.0072.

16. Sharipov R. A., Energy conservation law for the gravitational field in a 3D-brane universe
without equidistance postulate, e-print viXra:2308.0175.


https://en.wikipedia.org/wiki/Eternalism_(philosophy_of_time)
https://vixra.org/abs/2207.0173
https://vixra.org/abs/2301.0033
https://vixra.org/abs/2302.0120
https://vixra.org/abs/2303.0123
https://vixra.org/abs/2304.0225
https://vixra.org/abs/2304.0225
https://vixra.org/abs/2305.0113
https://vixra.org/abs/2305.0113
https://vixra.org/abs/2306.0104
https://vixra.org/abs/2307.0039
https://vixra.org/abs/2307.0072
https://vixra.org/abs/2308.0175

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43.

RELATIVISTIC ELASTICITY IN THE 3D-BRANE UNIVERSE MODEL. 21

Sharipov R. A., Decay of a superbradyon into a baryonic particle and its antiparticle, e-print
viXra:2403.0041.

Sharipov R. A., Relativistic hardening and softening of fast moving springs, ResearchGate
publication No. 379537924, 2024; DOI: 10.13140/RG.2.2.10991.24488.

Sharipov R. A., 3D-brane universe model, Conference abstracts book of the International
scientific and practical conference “Spectral theory of operators and related topics” dedicated
to 75th anniversary of Prof. Ya. T. Sultanaev (Vildanova V. F., Garifullin R. N., Kuda-
sheva E. G., eds.), 2023, pp. 38-39.

Sharipov R. A., 8D-brane universe without equidistance postulate, Conference abstracts book
“Ufa autumn mathematical school 2023” (Fazullin Z. Yu., ed.), vol. 2, pp. 153-156.
Sharipov R. A., 8D-brane universe model, Conference abstracts book of the 14th international
conference “Foundamental mathematics and its applications in natural sciences 2023” dedi-
cated to 75th anniversary of Profs. Ya. T. Sultanaevand M. Kh. Kharrasov (Khabibullin B. N.,
Ekomasov E. G., Gabdrakhmanova L. A., Zakiryanov F. K., Kharisov A. T., eds.), p. 18.
Sharipov R. A., Energy conservation law for the gravitational field in the 8D-brane universe
model, Conference abstracts book “Complex analysis, mathematical physics, and nonlinear
equations”, March 11-15, Pavlovka-Ufa, (Garifullin R. N., ed.), 2024, pp. 72-73.

Sharipov R. A., Decay of a superbradyon into a baryonic particle and its antiparticle, Confer-
ence abstracts book of the second all Russia youth conference “Modern physics, mathematics,
digital and nanotechnologies in science and education (®MITH-24)” dedicated to 70th an-
niversary of Prof. R. M. Asadullin, April 17-19, Ufa 2024 (Vasilyeva L. I., Kudasheva E. G.,
Kudinov I. V., Izmailov R. N., Kosarev N. F.; Gess D-L. Z., eds.), pp. 100-101.

Sharipov R. A., Relativistic hardening and softening of fast moving springs, Conference ab-
stracts book of the ninth interregional school-conference of students and young scientists
“Theoretical and experimental studies of nonlinear processes in condensed media”, April 25-
26, Ufa 2024 (Zakiryanov F. K., Gabdrakhmanova L. A., Kharisov A. T., eds.), p. 8.
Sharipov R. A., Relativistic hardening and softening of moving springs, Conference abstracts
book “Ufa autumn mathematical school 2024” (Fazullin Z. Yu., ed.), vol. 2, pp. 187-190.
Sharipov R. A., Decay of a superbradyon, Conference abstracts book of the 15th interna-
tional conference “Foundamental mathematics and its applications in natural sciences 2024”
dedicated to 300th anniversary of Russian Academy of Sciences (Khabibullin B. N.,; Eko-
masov E. G., Gabdrakhmanova L. A., Zakiryanov F. K., Kuzhaev A. F., eds.), p. 18.
Sharipov R. A., 8D-brane universe model, Monograph, Part 1, Russian edition, Ufa, 2024;
ISBN 978-5-600-04170-7; see also ResearchGate publication No. 383040427, 2024.

Time dilation, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Length contraction, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Sharipov R. A., Classical electrodynamics and theory of relativity, Bashkir State University,
Ufa, 1997; see also arXiv:physics/0311011.

Speed of light, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Second, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Gravitational constant, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.
Cosmological constant, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Flow wvelocity, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Lyuksyutov S. F., Sharipov R. A., Note on kinematics, dynamics, and thermodynamics of
plastic glassy media, e-print arXiv:cond-mat/0304190.

Kronecker delta, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Jacobian matriz and determinant, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.
Jacobi’s formula, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.
Stationary-action principle, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.
Euler-Lagrange equation, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.
Compact support, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Sharipov R. A., Course of differential geometry, Bashkir State University, Ufa, 1996; see also
arXiv:math/0412421.

UFA UNIVERSITY OF SCIENCE AND TECHNOLOGY,
32 ZAKI VALIDI STREET, 450076 UFA, RuUssIA
E-mail address: r-sharipov@mail.ru


https://vixra.org/abs/2403.0041
https://www.researchgate.net/publication/379537924
https://www.researchgate.net/publication/383040427
https://en.wikipedia.org/wiki/Time_dilation
https://en.wikipedia.org/wiki/Length_contraction
http://arxiv.org/abs/physics/0311011
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Flow_velocity
http://arXiv.org/abs/cond-mat/0304190
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Jacobi's_formula
https://en.wikipedia.org/wiki/Stationary-action _principle
https://en.wikipedia.org/wiki/Euler-Lagrange_equation
https://en.wikipedia.org/wiki/Support_(mathematics)#Compact_support
http://arxiv.org/abs/math/0412421
mailto:r-sharipov@mail.ru

