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«Just an instance short as a wink is between the future and
the past, this very instance is called life!» These are the words
from the song for the movie «Sannikov Land». They could not
be better suited as an epigraph to this book.

For a person this instance is his current thoughts and feelings.
Or the actions that he is performing now. For the universe this
instance is stretched across all its vast expanses and includes
all the events that are happening now, no matter how far away
from us they are. Such an instance can be imagined as a
three-dimensional film or membrane, which for brevity is called
a 3D-brane. It separates the four-dimensional bulk of the past
from the four-dimensional bulk of the future.

In his theory of relativity Albert Einstein combined space and
time into one four-dimensional continuum. He forbade drawing a
boundary between the past and the future in such a continuum,
calling it conditional and dependent on the observer. According
to the author of this e-book, now it is time to return to the
ideas of Isaac Newton and draw a boundary between the past
and the future. But now, at a new stage of development, this
boundary is no longer flat, but it is flexible. It can bend, which
manifests itself through gravitational lensing. This boundary can
also stretch, which manifests itself in the form of the expansion
of the universe and in the scattering of distant galaxies in all
directions from us.

As a bonus in the new theory, which is presented in this
book, there is the opportunity to move faster than the speed
of light. It is realized in dark matter particles which are called
superbradyons. These particles were invented by Luis Gonzalez-
Mestres. He also gave them this name — superbradyons.
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PREFACE.

In the history of physics there were periods of steady ac-
cumulation and recognizing the knowledge about nature which
alternated with periods of revolutionary changes of our views of
nature. One of such periods of revolutionary changes is associ-
ated with the emergence of Albert Einstein’s theory of relativity
and with the emergence of quantum mechanics which was au-
thored by several scientists. As to me, unlike the opinion of
many others, this revolutionary period is not yet finished and we
can expect some corrections to the picture of the world that was
drawn by the theory of relativity and quantum mechanics.

The 3D-brane universe model is a new non-Einsteinian theory
of gravity that is based on criticism and some adjustment of the
concept of spacetime. In this book we present the first part
of this theory covering the period of its development from the
summer of 2022 to the spring of 2024. It includes

— an exposition of arguments in favor of the need to make
changes to the theory of relativity;

— a formulation of the basic concepts of the new theory;
— a derivation of the equations of gravity in the new theory;
— a derivation of the total energy conservation law in the new

theory;
— a derivation of formulas for the density of energy of a gravita-

tional field and for the density of energy flux of a gravitational
field in the new theory;

— a description of the motion of classical (non-quantum) matter
particles in a gravitational field within the framework of the
new theory.

The content of further parts of the new theory will be determined
over time as it further develops.

August 2024. R. A. Sharipov.



CHAPTER I

BASIC CONCEPTS AND STRUCTURES.

§ 1. Criticism of spacetime.

Spacetime is a four-dimensional continuum that was con-
structed by joining three-dimensional space and one-dimensional
time. It is in the basis of both special and general relativity
(see [1–3]). In special relativity it is a flat continuum. In general
relativity this continuum is endowed with a curvature determined
by the gravitational field in it.

Points of spacetime are called events, while spacetime itself
comprises all events that have happened anywhere and at any
time. This means that it comprises the past, the present, and
the future. The boundary between the past and the future in
the theory of relativity is fuzzy, it depends on the observer. This
circumstance is called the relativity of simultaneity. It leads to a
paradox which is called the Andromeda paradox (see [4] and [5],
pp. 303-304). In a slightly different formulation it is known as
the Napoleon paradox (see [6]).

In philosophical literature the Andromeda paradox is known as
the Rietdijk-Putnam argument (see [7] and [8]). It is considered
an argument for the four-dimensionality of the physical universe.
However, in reality it demonstrates a contradiction between four-
dimensionality and common sense.

Instead of considering the entire universe, we can limit our-
selves to some part of it. For example to the Earth Globe. Then
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we will get a cylindrical struc-
ture shown in Fig. 1.1. Such a
cylindrical structure resembles a
sausage in shape. Therefore we
can call it a spacetime sausage.
This sausage contains the en-
tire history of the planet Earth,
which includes the period of the
gas-dust cloud and the primary
Earth, the period of the appear-
ance of liquid water and the ori-
gin of life, the era of dinosaurs,
the era of mammals, the appear-

ance of Homo sapiens, our present, i. e. the current moment in
time, and our entire future.

The main question addressed to the theory of relativity and
related to spacetime is formulated as follows.

Question 1.1. Is four-dimensional spacetime a physical con-

tinuum? Or is it just a product of our minds — a mathematical

abstraction to which nothing corresponds in reality?

This question is discussed among philosophers (see [9]). Physi-
cists avoid it, relying on the authority of Einstein’s theory of
relativity. In this theory spacetime is considered a physical con-
tinuum by default. Indeed, in it the equations of gravity are
written in a four-dimensional formalism, Maxwell’s equations of
electrodynamics are rewritten in a four-dimensional form, and
the equations of motion of material bodies and various material
media also tend to be brought to a four-dimensional form.

The choice in favor of the conviction that spacetime is a
physical continuum is a responsible decision. It follows from this
choice that the spacetime sausage containing the entire history
of the Earth is a physical object. It contains in its original
form the gas-dust cloud and the primary hot Earth, the first
oceans with the first bacteria, dinosaurs, and mammoths with

CopyRight c© Sharipov R.A., 2025.



8 CHAPTER I. BASIC CONCEPTS AND STRUCTURES.

saber-toothed tigers. Moreover, the spacetime sausage contains
our entire future, which has not yet arrived.

Since the past does not disappear, being preserved in the
spacetime sausage, and since the future is predetermined and
already formed in the spacetime sausage, Einstein’s theory of
relativity admits the potential possibility to travel back to
the past and forward to the future. Although the mecha-
nism for such travels is not spelled out, they are very pop-
ular in the genre of science fiction. But neither in Ein-

stein’s time nor now have there been or are there any

experimental demonstrations of time travel. Therefore,

the position that spacetime is a physical continuum is

an unproven and controversial point in the foundations

of Einstein’s theory of relativity.

§ 2. Three-dimensional universe and its

presentation in the form of 3D-branes.

Returning to the main question 1.1, we emphasize that, unlike
the theory of relativity, the answer to it in the new theory is
negative. This means that spacetime is not a physical continuum.
However, we do not completely abandon the concept of four-
dimensional spacetime and use it as a valuable mathematical
tool for selectively transferring some individual results from the
theory of relativity to the new theory.

Spacetime in the theory of relativity is a four-dimensional
manifold equipped with three geometric structures: 1) a pseudo-
Riemannian metric with the signature (+,−.−,−), 2) an orien-
tation, 3) a polarization (see [3]). An observer in the theory
of relativity is an animate object whose dimensions are small
compared to planets, stars, and galaxies so that it can be con-
sidered as a point object. The motion of observers in spacetime
is depicted in the form of their world lines. Figure 2.1 (see
below) shows the world lines of two observers. At each point
they pass inside light cones determined by the spacetime metric.
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The motion of observers along
their world lines goes from the
past through the present to the
future, which is determined by
the polarization of spacetime. In
our case, this is the motion from
bottom to top.

Let us consider separately the
first observer in Fig. 2.1. Let
the point A be the point of the
present for the first observer. It
has material existence, i. e. it has

a prototype in the real physical universe. The point C is the
point of the past for the first observer. It had, but lost its
material existence, remaining in the past. The point B, the
point of the future for the first observer, has not yet acquired
its material existence. Thus, on each world line at each moment
only one point has material existence. This property (material
existence) is transient. It passes from one point to another as
events unfold in the real physical universe.

Let us consider again the first observer in Fig. 2.1, who is at
the point A in his present. Being at this point, he understands
that at this moment he is not alone in the universe. Somewhere
there is some second observer, who at this moment is at some
point A′ on his world line. We know that instantaneous data
transmission is forbidden in the theory of relativity. It is for-
bidden in the new theory as well. The points A and A′ are not
connected to each other by any signals. They have only one
thing in common — joint material existence. Joint material
existence between points A and A′ exists in the present. But such
a connection between points of two world lines could have existed
in the past and can be formed in the future. For example, the
point C on the world line of the first observer could have joint
material existence with some point C ′ on the world line of the
second observer if the second observer existed at that moment,
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i. e. if he was born, but has not yet died. Similarly, the point
B on the world line of the first observer will have joint material
existence with some point B′ on the world line of the second
observer if the second observer will exist at that moment, i. e. if
he will be born, but will not have died yet.

In what follows we consider the property of joint material

existence as a binary equivalence relation (see [10] or § 2 in
Chapter I of [11]) on spacetime regardless of when it occurs — in
the past, in the present, or in the future. We do not restrict it to
points on world lines of animate observers and extend it to points
on world lines of inanimate objects, as well as to vacuum points in
interstellar space and to vacuum points inside vacuum chambers
of man-made apparata. The binary relation of joint material

existence partitions spacetime into pairwise disjoint classes of

joint material existence. One of such classes, namely the class
of joint material existence of the points A and A′, is depicted in
Fig. 2.1 in the form of a colored spot.

Speculatively the form and structure of classes of joint material
existence can be any. They can be smooth structures, or fractals,
or even completely structureless sets. But we prefer to deal with
smooth structures and postulate that they are smooth orientable
three-dimensional manifolds, i. e. 3D-branes.

The 3D-branes of classes of joint material existence are subject
to the natural requirement of spacelikeness. It means that at all
their points the tangent hyperplanes to these branes intersect the
corresponding light cones only at their vertices.

From the above the following picture of the world is formed in
the new theory. The real physical universe is three-dimensional.
It evolves and each moment of its evolution is depicted in the
form of a 3D-brane in four-dimensional spacetime. These 3D-
branes fill the entire spacetime with the possible exception of
one point, which corresponds to the Big Bang (see [12]). Thus,
the new theory of gravity considered in this book denies the
material existence of the entire spacetime as a whole and turns it
into a collection of mathematical images of the real physical uni-
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verse obtained at different moments of its evolution. It endows
the spacetime of the theory of relativity with one more geometric
structure — a foliation of spacelike 3D-branes. In what follows we
shall consider spacetime as a four-dimensional manifold equipped
with four geometric structures: 1) a pseudo-Riemannian metric
with the signature (+,−.−,−), 2) an orientation, 3) a polar-
ization, 4) a foliation of spacelike 3D-branes filling it entirely
with the exception of perhaps one point corresponding to the
Big Bang. Spacetime with such structures serves as a factor of
continuity and a bridge between the theory of relativity and the
new theory.

§ 3. The field of unit normals and

comoving spacial coordinates.

According to the results of the previous section, spacetime
is now equipped with a foliation of spacelike 3D-branes. The
3D-branes fill the entire spacetime except for perhaps one point
corresponding to the Big Bang. If we exclude this point, then
through each of the remaining points P there passes exactly
one 3D-brane. The spacelikeness of the branes means that the
perpendiculars to them are timelike. The orientability of the
branes and the presence of a metric and polarization in space-
time allow us to choose unit normal vectors to the branes n(P )
directed toward the future and changing smoothly when moving

from point to point within indi-
vidual branes and when moving
from one brane to another:

|n(P )| = 1. (3.1)

The unit normal vectors (3.1) to
the branes constitute a smooth
vector field in the foliation of
3D-branes. This vector field is
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shown in Fig. 3.1. We cannot draw three-dimensional branes in a
four-dimensional space, therefore in the figure they are drawn in
the form of two-dimensional branes in a three-dimensional space.

Every vector field has a fam-
ily of field lines associated with
it (see [13]). These are lines
whose tangent vector at each
of their points is directed along
the field vector at that point.
Field lines of unit normals n are
shown in Fig. 3.2.

The concept of a field line is
very similar to the concept of an integral line for a vector field
(see [14]). The difference is in the parameterization. Integral lines
of a vector field are parametric lines whose tangent vector in their
parameterization at each of their points coincides with the field
vector at that point. Geometrically, as sets of points, integral
lines of a vector field coincide with its field lines. Therefore in
what follows we shall not make a distinction between the field
lines and the integral lines of the vector field n in Fig. 3.2.

Let us choose some arbitrary curvilinear coordinates x, y, z

on one of the 3D-branes in Fig. 3.2, say on the lower one, and
introduce the notation:

x1 = x, x2 = y, x3 = z. (3.2)

The use of superscripts for numbering coordinates of vectors and
some other indexing conventions are believed to have been in-
vented by Einstein. They constitute Einstein’s tensorial notation
for the use of indices (see § 20 in Chapter I of [15]).

Using the field lines of the unit normal vector field n (see
Fig. 3.2), the coordinates (3.2) can be extended from an initially
chosen 3D-brane to all other branes, both upwards to the future
and downwards to the past. The coordinates obtained in this
way are called comoving coordinates.
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Definition 3.1. Three smooth functions x, y, z defined glob-
ally in the entire spacetime or locally in some region of it are
called comoving spacial coordinates if their values do not change
when moving along field lines of the unit vector field perpen-
dicular to the 3D-branes and if they become global or local
coordinates on a brane after restriction to any of the 3D-branes.

The choice of comoving coordinates is not unique. We can
replace the initially chosen comoving coordinates by others. Such
a replacement of comoving coordinates is carried out within some
individual 3D-brane and then it extends to all other branes.
Therefore we obtain the following formulas for the transition
from some initially chosen comoving spacial coordinates to any
other comoving spacial coordinates:











x̃1 = x̃1(x1, x2, x3),

x̃2 = x̃2(x1, x2, x3),

x̃3 = x̃3(x1, x2, x3),











x1 = x1(x̃1, x̃2, x̃3),

x2 = x2(x̃1, x̃2, x̃3),

x3 = x3(x̃1, x̃2, x̃3).

(3.3)

Spacetime is four-dimensional. But in (3.3) we see only three
coordinates. The fourth coordinate does not participate in the
replacement of comoving coordinates.

§ 4. Comoving observers and the state

of absolute rest.

Let’s recall that 3D-branes, which constitute the new fourth
geometric structure in spacetime, are spacelike hypersurfaces.
The unit vectors normal to them are timelike vectors. This
means that the field lines of the unit vectors normal to the branes,
shown in Fig. 3.2, can serve as worldlines of some observers in
spacetime. Such observers are called comoving observers.

Definition 4.1. Observers whose comoving coordinates do
not change over time are called comoving observers.



14 CHAPTER I. BASIC CONCEPTS AND STRUCTURES.

Comoving observers move perpendicular to the 3D-branes from
the past to the future. They do not move in the direction
along the branes. Therefore, they are considered to be at rest.
This is the state of absolute rest, since it is not tied to any
material objects in the universe. Comoving coordinates form a
dedicated coordinate systems in the universe that define the state
of absolute rest.

Question 4.1. Is the presence of dedicated coordinates defin-

ing the state of absolute rest a necessary condition in the new

theory?

The answer to this question is negative. Dedicated coordinates
appear in the new theory because we do not completely reject the
legacy of Einstein’s theory of relativity and retain the concept
of spacetime, though we lower its status to the level of an
immaterial mathematical abstraction. In principle, it is possible
to construct a theory of a three-dimensional universe without
using the concept of spacetime. In such a theory, there may be
no dedicated coordinate systems and no state of absolute rest.

Question 4.2. Is the presence of dedicated coordinates that

define the state of absolute rest a return to the ether theory?

Yes, to some extent. Although the classical luminiferous ether
of the 19th century is the medium in which light propagates.
In our case, comoving coordinates and the state of absolute rest
determined by them are not related to any material medium.

Question 4.3. Is the presence of dedicated coordinates defin-

ing the state of absolute rest a return to absolute Newtonian three-

dimensional space?

Yes, to some extent. But Newtonian three-dimensional space
is flat and unchanging. In our case, the metric on different 3D-
branes can be different and non-flat. This means that the metric
in our three-dimensional universe can be non-flat and change over

CopyRight c© Sharipov R.A., 2025.



§ 5. MEMBRANE TIME. 15

time. That is, the universe in our theory can expand or contract
in some individual regions or globally as a whole.

§ 5. Membrane time.

Definition 5.1. A smooth numerical function t on spacetime
is called membrane time if its values do not change within each
3D-brane of the foliation of 3D-branes and if it increases strictly
monotonically in the direction from the past to the future.

We know that 3D branes correspond to different stages in
the evolution of the real three-dimensional universe. Membrane
time numbers these stages assigning each of them some numerical
value from the set of real numbers.

The choice of membrane time is not unique. The replacement
of one membrane time by another is given by the formulas

t̃ = t̃(t), t = t(t̃). (5.1)

The transformations (5.1) are called membrane time scaling
transformations. Smooth functions of one variable in (5.1) are
subject to additional conditions

dt̃

dt
> 0,

dt

dt̃
> 0. (5.2)

The conditions (5.2) ensure strict monotonicity of the functions
t̃(t) and t(t̃) in the formulas (5.1).

When applied to the real three-dimensional physical universe,
membrane time is a global time, it is defined throughout the
universe and is the same at all its points. But, being simply a
marker numbering 3D-branes and distinguishing them from each
other in the foliation of 3D-branes, membrane time does not have
to coincide with the time measured by any device.
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§ 6. The equidistance postulate and

abandonment of it.

The first version of the new theory of gravity, the name of
which coincides with the title of this book, was developed in a
series of publications [16–21]. The works [16–21] were preceded
by the work [22]. The results of the works [16–21] were reported
at the conferences [23–27]. The first version of the theory was
constructed using the following equidistance postulate.

Postulate 6.1. For any two 3D-branes from the foliation of

3D-branes in spacetime the lengths of all segments of the field lines

in Fig. 3.2 enclosed between these two 3D-branes are the same.

Later I realized that the equidistance postulate 6.1 is not
needed. In the second version of the theory it was excluded,
see the works [28–33] and the conference abstracts [34–37]. The
second version of the theory without the equidistance postulate
is more general. Therefore it is presented further in this book.



CHAPTER II

GRAVITATIONAL FIELD EQUATIONS.

§ 1. Speed of light and its analogs.

The speed of light in vacuum is the speed of propagation
of electromagnetic waves in empty space. Accordingly we shall
denote it by cel. Generally speaking this is an experimen-
tally measurable quantity. However, in 1983 by resolution No. 1
adopted at the 17th meeting the General Conference on Weights
and Measures decided to define the standard of length of 1 meter
through the speed of light in vacuum. After that the quantity cel

received an exact numerical value

cel = 299792458 m/s (1.1)

(see [38]). In addition to the unit of length, the formula (1.1)
uses a unit of time. This is the second. Since 1967, one second
has been defined as 9192631770 periods of oscillations of the
radiation corresponding to the transition between two levels of
the hyperfine structure in the ground state of the cesium-133
isotope atom (see [39] and [40]).

In Einstein’s theory of relativity the speed of light plays many
roles. In addition to determining the speed of propagation
of electromagnetic waves it is present in the equations of the
gravitational field and it determines the speed limit of motion of
massive material bodies. The material bodies that we observe
in everyday life consist of matter that in astrophysics is called
light or baryonic matter. In addition to it, there is so-called dark
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matter (see [41]). It is not detected by direct observations and
experiments. Its presence is confirmed indirectly by determining
the speeds of stars on the outskirts of galaxies (see [42]) and
through gravitational lensing (see [43]). Since there is currently
no way to experimentally measure the maximum speed for dark
matter, there is no reason to believe that this speed coincides
with the constant (1.1). In this book we shall consider four speed
constants. They are

cel, cgr, cbr, cnb. (1.2)

The first constant (1.2) coincides with the constant (1.1). The
second is used in the gravity equations. The third is the limiting
speed for baryonic matter. The fourth constant is the limiting
speed for non-baryonic matter. Since we currently know nothing
about the structure of dark matter, we assume that it can be
divided into several sorts and each sort of dark matter can have
its own value of the constant cnb.

In the new theory of gravity, which is considered in this
book, there are no a priori prohibitions on all the constants
(1.2) being different. And if an experiment shows that some of
them coincide, then this must be given a separate theoretical
justification. We do not consider Einstein’s theory of relativity
to be such a justification due to the objections to it that were
expressed in § 1 from the first chapter of this book.

§ 2. Reduction of a four-dimensional

metric to a three-dimensional one.

Based on the criticism of spacetime in § 1 of the first chap-
ter, we have reduced its status to the level of a mathematical
abstraction, to which no real four-dimensional physical space
corresponds. However, in the new theory we do not abandon
the concept of spacetime completely, retaining it as a useful
mathematical abstraction.
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In § 2 of Chapter 1, it was said that spacetime is equipped with
four geometric structures: 1) a pseudo-Riemannian metric with
the signature (+,−.−,−), 2) an orientation, 3) a polarization,
4) a foliation of spacelike 3D-branes filling it entirely except for
perhaps one point corresponding to the Big Bang. The first
three of these structures are borrowed from Einstein’s theory of
relativity. The fourth is added in the new theory based on the
arguments in § 2 of Chapter 1. Let us examine the role of these
structures. The orientation prevents left and right from mixing
in dimension four and prevents spacetime from being something
bad like a Möbius strip (see [44]).

The polarization indicates the direction from the past to the
future. In § 3 of the first chapter, it allowed us to choose a field
of unit normals to the 3D-branes directed to the future. The
presence of the first three structures and the spacelikeness of the
3D-branes induces a three-dimensional orientation to them. That
is, in the 3D-branes the left and right in dimension three also
cannot mix and the 3D-branes themselves cannot be something
bad like a Möbius strip (see [44]). This is natural since 3D-branes
in our theory are images of the real physical universe at different
moments of its evolution.

The pseudo-Riemannian metric is the basic quantitative char-
acteristic of spacetime. In an arbitrary coordinate system x0, x1,
x2, x3 it is defined by a symmetric 4 × 4 matrix G. The compo-
nents of this matrix are

Gij = Gj i, where 0 6 i, j 6 3. (2.1)

In § 3 of Chapter I we constructed three special spacial coordi-
nates (3.2) associated with the foliation of 3D-branes and the
field of unit normals n to them. They were called comoving co-
ordinates, see definition 3.1. Then, in § 5 of Chapter I we defined
the membrane time t, see definition 5.1. Using the membrane
time, we complement the spacial comoving coordinates (3.2) to a
complete coordinate system in four-dimensional spacetime:

x0 = cgr t, x1 = x, x2 = y, x3 = z. (2.2)
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Note that in (2.2) we do not use the speed of light cel from the
formula (1.1), but we use the second constant from (1.2).

With the coordinates (2.2) the vectors

e0 =
∂

∂x0
, e1 =

∂

∂x1
, e2 =

∂

∂x2
, e3 =

∂

∂x3
(2.3)

are associated. From the definition 5.1 in the first chapter
it follows that individual 3D-branes can be distinguished by
conditions of the form t = const. Therefore the last three vectors
in (2.3) are tangent to 3D-branes. From the definition 3.1 in the
first chapter it follows that individual field lines of the vector field
n can be distinguished by conditions of the form x1 = const1,
x2 = const2, x3 = const3. Therefore the vector e0 is tangent to
the field lines of the field n and is directed to the future along
the normal vector n. Hence

e0 ⊥ e1, e0 ⊥ e2, e0 ⊥ e3. (2.4)

For the components of the pseudo-Riemannian metric (2.1) in
the coordinates (2.2) the relationships (2.4) mean that

G12 = 0, G13 = 0, G23 = 0,
(2.5)

G21 = 0, G31 = 0, G32 = 0.

Theorem 2.1. In the special coordinates (2.2) obtained by

combining the spacial comoving coordinates and membrane time

the matrix of the pseudo-Riemannian metric (2.1) satisfies the

relationships (2.5) and therefore becomes block-diagonal.

Based on the signature (+,−,−,−) of the pseudo-Riemannian
metric in spacetime, we write the result of Theorem 2.1 as

Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

g00 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (2.6)
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All components of the matrix (2.6) are functions of the coordi-
nates (2.2). They can also be viewed as functions of the three
spacial comoving coordinates and membrane time. No other
coordinate systems will be considered in this book.

The quantities in the lower diagonal block of the matrix (2.6)
define a three-dimensional Riemannian metric on the branes,
which corresponds to the time-dependent Riemannian metric in
the real physical universe:

gij = gij(t, x
1, x2, x3), where 1 6 i, j 6 3. (2.7)

Under the transformations of the comoving coordinates given by
the formulas (3.3) in Chapter I they are transformed as follows:

g̃ij =

3
∑

k=1

3
∑

q=1

gkq
∂xk

∂x̃i

∂xq

∂x̃j
, gij =

3
∑

k=1

3
∑

q=1

g̃kq
∂x̃k

∂xi

∂x̃q

∂xj
. (2.8)

The formulas (2.8) are the transformation rules for a three-
dimensional tensor field of valence (0, 2).

The quantity g00 from the upper diagonal block of the matrix
(2.6) is a scalar function on 3D-branes, which corresponds to a
time-dependent scalar function in the real physical universe:

g00 = g00(t, x
1, x2, x3). (2.9)

Under the transformations of the comoving coordinates given by
the formulas (3.3) in the first chapter the function (2.9) behaves
like a scalar, i.e. it does not change. But under the membrane
time scaling transformation given by the formulas (5.1) in the
first chapter, it transforms as follows:

g̃00 = g00

(

∂t

∂t̃

)2

, g00 = g̃00

(

∂t̃

∂t

)2

. (2.10)

The formulas (2.10) are transformation rules for a one-dimensio-
nal tensor field of valence (0, 2).

CopyRight c© Sharipov R.A., 2025.
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The quantities (2.7) behave like scalars under the time scaling
transformations given by the formulas (5.1) in the first chapter.
They do not change. Only the time argument in them changes.

The scalar function (2.9) and the components of the metric
(2.7) form a complete set of dynamic variables describing the
gravitational field in the new theory. Due to the symmetry of
the matrix (2.7) the number of such dynamic variables is 7.
For comparison, in Einstein’s theory of relativity the number of
dynamic variables describing the gravitational field is 10.

§ 3. Einstein’s equations.

We shall write Einstein’s equations, which describe the gravi-
tational field in Einstein’s theory of relativity, as follows:

rij −
r

2
Gij − Λ Gij =

8 π γ

c4
gr

Tij. (3.1)

The form of Einstein’s equations (3.1) is slightly different from
that found in Wikipedia [45]. The main difference is the sign
before Λ. This choice was made to match the notation with the
book [3]. Due to the difference in sign that has arisen we choose
here the value of the cosmological constant that differs in sign
from that of Wikipedia [46]:

Λ ≈ −1.0905 · 10−56
cm

−2. (3.2)

In addition to (3.2) Einstein’s equations (3.1) contain another
constant γ. This is Newton’s gravitational constant

γ ≈ 6.674 · 10−8
cm

3 · g
−1 · s

−2, (3.3)

which is a part of the law of universal gravitation (see [47] and
[48]). The letter γ is used to denote the constant (3.3) to align
the notation with the book [3].
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The quantities Tij in the right-hand side of the equation
(3.1) are components of the energy-momentum tensor. They are
determined by the fields of matter, including dark matter.

The rij quantities in (3.1) are the components of the Ricci
tensor. They are calculated via the components of the metric
(3.1) in several steps. First, the components of the metric
connection are calculated — the Christoffel symbols:

γk
ij =

1

2

3
∑

s=0

Gks

(

∂Gsj

∂xi
+

∂Gis

∂xj
− ∂Gij

∂xs

)

, (3.4)

see [49]. Then, using the Christoffel symbols (3.4), the compo-
nents of the curvature tensor are calculated:

rk
isj =

∂γk
ji

∂xs
− ∂γk

si

∂xj
+

3
∑

q=0

γk
sq γ

q
ji −

3
∑

q=0

γk
jq γ

q
si, (3.5)

see [50]. The components of the Ricci tensor are obtained from
the components of the curvature tensor (3.5) by contraction over
the pair of indices k and s:

rij =

3
∑

k=0

rk
ikj , (3.6)

see [51]. The scalar curvature is obtained by contracting the
Ricci tensor (3.6) with the inverse metric tensor:

r =

3
∑

i=0

3
∑

j=0

rij Gij , (3.7)

see [52]. The components of the inverse metric tensor in (3.4)
and (3.7) are denoted by the letter G with upper indices. They
form the matrix inverse to the matrix (2.1).
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§ 4. Reduction of the four-dimensional

Ricci tensor to 3D-branes.

The Ricci tensor (3.6) is included in the Einstein equations
(3.1). Its reduction to 3D-branes consists in substituting the
block-diagonal matrix (2.6) into the formulas (3.4), (3.5), and
(3.6). The three-dimensional metric (2.7), which is a part of the
matrix (2.6), defines its own set of Christoffel symbols:

Γk
ij =

1

2

3
∑

s=1

gks

(

∂gsj

∂xi
+

∂gis

∂xj
− ∂gij

∂xs

)

. (4.1)

Some of the Christoffel symbols (3.4) coincide with the Christoffel
symbols (4.1). Namely, it can be shown that

γk
ij = Γk

ij for 1 6 i, j, k 6 3. (4.2)

The remaining components of the Christoffel symbols (3.4) are
calculated as follows:

γ0
ij =

g−1
00

2

∂gij

∂x0
for 1 6 i, j 6 3, (4.3)

γk
0j = γk

j0 =
1

2

3
∑

s=1

gks ∂gsj

∂x0
=

=

3
∑

s=1

g00 gks γ0
sj for 1 6 k, j 6 3,

(4.4)

γ
q
00 =

1

2

3
∑

s=1

gqs ∂g00

∂xs
for 1 6 q 6 3, (4.5)

γ0
q0 = γ0

0q =
1

2
g−1
00

∂g00

∂xq
for 1 6 q 6 3, (4.6)

γ0
00 =

1

2
g−1
00

∂g00

∂x0
. (4.7)
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The formulas (4.3), (4.4), (4.5), (4.6), and (4.7) are derived from
(3.4) using the formula (2.6).

Next, we define the following quantities:

bij =
1

2

∂gij

∂x0
. (4.8)

In this case we assume that the special coordinates (2.2) are
chosen in (4.8). The quantities (4.8) are the components of the
symmetric tensor field b. Raising indices in (4.8), we produce
the following quantities:

bk
j =

3
∑

s=1

gks bsj , bij =
3
∑

s=1

bi
s gsj . (4.9)

Using the above quantities (4.8) and (4.9), the formulas (4.3) and
(4.4) can be rewritten as follows:

γ0
ij = g−1

00 bij for 1 6 i, j 6 3, (4.10)

γk
0j = γk

j 0 = bk
j for 1 6 k, j 6 3. (4.11)

To calculate the components of the Ricci tensor using the
formula (3.6), not all components of the curvature tensor (3.5)
are needed, but only those for which s = k:

rk
ikj =

∂γk
ji

∂xk
− ∂γk

ki

∂xj
+

3
∑

q=0

γk
kq γ

q
ji −

3
∑

q=0

γk
jq γ

q
ki. (4.12)

Applying (4.2), (4.10), and (4.11) to (4.12), we obtain

rk
ikj = Rk

ikj + g−1
00 bk

k bij −
− g−1

00 bk
j bki for 1 6 i, j, k 6 3.

(4.13)

Here Rk
ikj are the components of the three-dimensional curvature
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tensor. They are given by a formula similar to (3.5):

Rk
isj =

∂Γk
ji

∂xs
− ∂Γk

si

∂xj
+

3
∑

q=1

Γk
sq Γq

ji −
3
∑

q=1

Γk
jq Γq

si. (4.14)

The components of the three-dimensional connection in (4.14)
are given by the formula (4.1). And the three-dimensional Ricci
tensor is given by the formula

Rij =

3
∑

k=1

Rk
ikj, (4.15)

which is analogous to (3.6).
Let’s consider the case k = 0 and 1 6 i, j 6 3 in (4.12). In this

case we have the following relationship:

r0
i0j =

∂γ0
ji

∂x0
− ∂γ0

0i

∂xj
+

3
∑

q=0

γ0
0q γq

ji −
3
∑

q=0

γ0
jq γq

0i. (4.16)

By applying the formulas (4.10), (4.6), (4.2), (4.7), and (4.11) to
(4.16), we reduce the formula (4.16) to the form

r0
i0j = g−1

00

∂bij

∂x0
− 1

2
g−1
00 ∇ij g00 −

1

2
g−2
00

∂g00

∂x0
bij +

+
1

4
g−2
00 ∇i g00 ∇j g00 −

3
∑

q=1

g−1
00 bjq b

q
i for 1 6 i, j 6 3.

(4.17)

Applying (4.13) and (4.17) to (3.6), we derive a formula for a
part of the components of the four-dimensional Ricci tensor:

rij = g−1
00

∂bij

∂x0
− 1

2
g−1
00 ∇ij g00 −

1

2
g−2
00

∂g00

∂x0
bij +

+
1

4
g−2
00 ∇i g00 ∇j g00 + Rij + g−1

00

3
∑

k=1

bk
k bij − (4.18)

− g−1
00

3
∑

k=1

(bki bk
j + bkj bk

i ) for 1 6 i, j 6 3.
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Here ∇ is the sign of the covariant derivative with respect to the
three-dimensional metric connection with components (4.1).

The next step is the case i = 0 and 1 6 j, k 6 3. in (4.12). In
this case we have the relationship

rk
0kj =

∂bk
j

∂xk
− ∂bk

k

∂xj
+

3
∑

q=1

Γk
kq b

q
j −

3
∑

q=1

Γk
jq b

q
k +

+
1

2
g−1
00 bk

k

∂g00

∂xj
− 1

2
g−1
00 bk

j

∂g00

∂xk
.

(4.19)

We shall add two terms to the formula (4.19) and change the
order of the terms in it:

rk
0kj =

∂bk
j

∂xk
+

3
∑

q=1

Γk
kq b

q
j −

3
∑

q=1

Γq
kj bk

q +
1

2
g−1
00 bk

k ∇j g00 −

− ∂bk
k

∂xj
−

3
∑

q=1

Γk
jq b

q
k +

3
∑

q=1

Γq
jk bk

q − 1

2
g−1
00 bk

j ∇k g00.

Because Γq
kj = Γq

jk the added terms are cancelled. But they allow
us to replace the partial derivatives with covariant ones:

rk
0kj = ∇k bk

j −∇j bk
k +

1

2
g−1
00 bk

k ∇j g00 −

− 1

2
g−1
00 bk

j ∇k g00 for 1 6 k, j 6 3.

(4.20)

Next we consider the case i = k = 0 and 1 6 j 6 3 in (4.12).
In this case we get the vanishing

r0
00j = 0 for 1 6 j 6 3. (4.21)

Applying (4.20) and (4.21) to (3.6), we obtain

r0j =

3
∑

k=1

(

∇k bk
j −∇j bk

k

)

+

3
∑

k=1

bk
k ∇j g00 − bk

j ∇k g00

2 g00

. (4.22)
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Due to the symmetry of rij = rj i from (4.22) we derive

ri0 =

3
∑

k=1

(

∇k bk
i −

3
∑

k=1

∇i bk
k

)

+

3
∑

k=1

bk
k ∇i g00 − bk

i ∇k g00

2 g00

. (4.23)

The next step is to compute the component r00 of the four-
dimensional Ricci tensor. We choose i = 0, j = 0, and 1 6 k 6 3
in (4.12). As a result of this choice we get

rk
0k0 =

1

2

3
∑

s=1

gks ∇ks g00 −
g−1
00

4

3
∑

s=1

gks ∇k g00 ·

· ∇s g00 +
1

2
g−1
00

∂g00

∂x0
bk
k − ∂bk

k

∂x0
−

3
∑

q=1

bk
q bq

k.

(4.24)

And the last case is i = 0, j = 0, k = 0 in (4.12). It yields

r0
000 = 0. (4.25)

Applying the relationships (4.24) and (4.25) to (3.6), we obtain

r00 =
1

2

3
∑

k=1

3
∑

s=1

gks ∇ks g00 −
g−1
00

4

3
∑

k=1

3
∑

s=1

gks ∇k g00 ·

· ∇s g00 +
1

2
g−1
00

∂g00

∂x0

3
∑

k=1

bk
k −

3
∑

k=1

∂bk
k

∂x0
−

3
∑

k=1

3
∑

q=1

bk
q b

q
k.

(4.26)

The formulas (4.18), (4.22), (4.23), and (4.26) perform the
desired reduction of the four-dimensional Ricci tensor to 3D-
branes. They express its components (3.6) in special coordinates
(2.2) through the components of the three-dimensional Ricci
tensor (4.15), through the scalar function g00, and through the
components of the tensor field b defined by means of the formula
(4.8). The components of the three-dimensional Riemannian
metric (2.7) are also present in these expressions.

CopyRight c© Sharipov R.A., 2025.
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§ 5. Reduction of the scalar curvature to 3D-branes.

The four-dimensional scalar curvature is given by the formula
(3.7). Taking into account (2.6), this formula can be rewritten as

r = r00 g−1
00 −

3
∑

i=1

3
∑

j=1

rij gij . (5.1)

Applying (4.18) and (4.26) to (5.1) and taking into account the
notation (4.8), we obtain the formula

r = g−2
00

∂g00

∂x0

3
∑

k=1

bk
k + g−1

00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −

− g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00 ∇q g00 − 2 g−1
00

3
∑

k=1

∂bk
k

∂x0
−

−R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q b

q
k − g−1

00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(5.2)

The quantity R in (5.2) is the three-dimensional scalar curvature.
It is defined by the following formula:

R =

3
∑

i=1

3
∑

j=1

Rij gij. (5.3)

The formula (5.3) is an analogue of the formula (3.6) for the four-
dimensional scalar curvature. And the formula (5.2) obtained
above realizes the desired reduction of the four-dimensional scalar
curvature to 3D-branes.

§ 6. Reduction of Einstein’s equations to 3D-branes.

In the right-hand side of Einstein’s equations (3.1) we see the
components of the energy-momentum tensor. However, we do not
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have any formulas for these components since we do not consider
any specific types of matter in the universe. Therefore to reduce
the components of the energy-momentum tensor to 3D-branes it
suffices to consider them as written in special coordinates (2.2).

Now we are ready to perform the reduction of Einstein’s
equations (3.1) to 3D-branes. As a result of such a reduction
Einstein’s equations are divided into three groups. The first
group of equations is the most numerous. It contains six equa-
tions numbered with two indices 1 6 i, j 6 3. The second group
of equations contains three equations, numbered with the index
1 6 i 6 3. The third group of equations contains only one
equation. Let’s write the first group of reduced equations:

g−2
00

2

(

gij

3
∑

k=1

bk
k − bij

)

∂g00

∂x0
+

g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij −

− δk
i δ

q
j

)

∇kq g00 −
g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

·

· ∇k g00 ∇q g00 + g−1
00

(

∂bij

∂x0
−

3
∑

k=1

∂bk
k

∂x0
gij −

3
∑

k=1

(bki ·

· bk
j + bkj bk

i ) − gij

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k − gij

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

+

3
∑

k=1

bk
k bij

)

+ Rij −
R

2
gij + Λ gij =

8 π γ

c4
gr

Tij .

(6.1)

Then we write the second group of reduced Einstein equations:

3
∑

k=1

∇k bk
i −

3
∑

k=1

∇i bk
k +

1

2
g−1
00

3
∑

k=1

bk
k ∇i g00 −

− 1

2
g−1
00

3
∑

k=1

bk
i ∇k g00 =

8 π γ

c4
gr

Ti0.

(6.2)
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And finally, we write down the only equation from the third
group of reduced Einstein equations:

1

2

3
∑

k=1

3
∑

q=1

(bk
k bq

q − bk
q b

q
k) +

R

2
g00 − Λ g00 =

8 π γ

c4
gr

T00. (6.3)

The equations (6.1) are derived using (4.18) and (5.2). The
equations (6.3) are derived using (4.26) and (5.2). The equations
(6.2) are derived using (4.23).

§ 7. Gravitational field equations in the new theory.

The number of different Einstein equations does not change
as a result of their reduction to 3D-branes. There are 10 of
them, six of them are in the equations (6.1), three are in the
equations (6.2), and one equation is in (6.3). The number of
dynamical variables describing the gravitational field in the new
theory is seven. Therefore three equations are excluded from
the new theory. These are the equations (6.2). The equations
(6.1) and (6.3) remain and constitute the system of equations of
the gravitational field in the new theory. The choice of these
equations will be justified below in Chapter III.

§ 8. Schwarzschild black holes in the new theory.

Schwarzschild black holes are defined by the Schwarzschild
metric. This metric is a solution of the Einstein equations (3.1)
with zero right-hand side and with the choice Λ = 0 in them.
In our theory we do not replace the Einstein equations (3.1)
with others. We only transform them into special coordinates
(2.2) associated with the foliation of 3D-branes and exclude
some of them from the theory. Therefore all solutions of the
Einstein equations (3.1) remain solutions of the gravitational field
equations (6.1) and (6.3) in the new theory after transforming
them into special coordinates (2.2).
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The Schwarzschild metric is diagonal in the coordinates in
which it is traditionally written. Its diagonal components are
determined by the following formulas:

g00 = 1 − rgr

ρ
, g11 =

−1

1 − rgr

ρ

,

(8.1)
g22 = −ρ2, g33 = −ρ2 sin2(θ).

The diagonality of the metric (8.1) is consistent with the block
diagonality of the matrix (2.6). The constant rgr in (8.1) is called
the gravitational radius of the Schwarzschild black hole.

The variables ρ and θ can be considered as spherical comoving
coordinates on branes supplemented by one more comoving coor-
dinate φ. They can be supplemented by membrane time t. With
this understanding of the variables present and absent in (8.1),
3D-branes will be given by the equations of the form t = const,
while the coordinates

x0 = cgr t, x1 = ρ, x2 = θ, x3 = φ. (8.2)

will be analogous to the coordinates (2.2).
The Schwarzschild metric is stationary, its components (8.1)

do not depend on the membrane time t in (8.2). Therefore from
the formula (4.8) we derive

bij = 0. (8.3)

By direct calculations it can be shown that the four-dimensional
Ricci tensor for the Schwarzschild metric (8.1) is identically zero:

rij = 0. (8.4)

The same is true for the four-dimensional scalar curvature:

r = 0. (8.5)
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The formula (8.4) is derived using the formulas (3.4), (3.5), and
(3.6). Then the formula (8.5) is derived using (3.7). From
(8.4) and (8.5) it follows that the Schwarzschild metric (8.1) is
a solution of Einstein’s equations (3.1) with zero right-hand side
and with the choice Λ = 0 in them.

In the three-dimensional paradigm of the new theory, the
Schwarzschild metric (8.1) is divided into a 3D metric

g11 =
1

1 − rgr

ρ

, g22 = ρ2, g33 = ρ2 sin2(θ) (8.6)

and a separate scalar function

g00 = 1 − rgr

ρ
. (8.7)

The metric (8.6) defines the components of the metric connection
according to the formula (4.1):

Γ1
11 =

rgr

2 ρ (rgr − ρ)
, Γ2

12 = Γ2
21 =

1

ρ
,

Γ1
22 = rgr − ρ, Γ3

23 = cot θ,
(8.8)

Γ1
33 = (rgr − ρ) sin2 θ, Γ3

13 = Γ3
31 =

1

ρ
,

Γ2
33 = −sin(2 θ)

2
, Γ3

32 = cot θ.

Using the connection components (8.8), we can calculate the
components of the three-dimensional Ricci tensor for the metric
(8.6) by means of the formulas (4.14) and (4.15). They form a
diagonal 3 × 3 matrix with the elements

R11 =
rgr

ρ2 (rgr − ρ)
, R22 =

rgr

2 ρ
, R33 =

rgr sin2 θ

2 ρ
(8.9)
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in the diagonal. From (8.9), having calculated the scalar curva-
ture by means of the formula (5.3), we find that it is zero:

R = 0. (8.10)

In the equations (6.1) there is the gradient of the scalar
function (8.7). Its components are easy to calculate:

∇1 g00 =
rgr

ρ2
, ∇2 g00 = 0, ∇3 g00 = 0. (8.11)

In addition to the gradient (8.11) in the equations (6.1) there is
the double gradient ∇ij g00 of the scalar function (8.7):

∇ij g00 =
∂2g00

∂xi ∂xj
−

3
∑

k=1

Γk
ij

∂g00

∂xk
. (8.12)

The components of the double gradient (8.12) are also easy to
calculate. They form a diagonal 3 × 3 matrix with the following
entries in the diagonal:

∇11 g00 =
(4 ρ− 3 rgr)

2 (rgr − ρ) ρ3
,

∇22 g00 =
rgr (rgr − ρ)

ρ2
, (8.13)

∇33 g00 =
rgr (rgr − ρ) sin2 θ

ρ2
.

The terms with the gradient components (8.11) and with the
double gradient components (8.13) in (6.1) have the form

Aij =
g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇k g00 ∇q g00,

Bij =
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇kq g00.

(8.14)
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The quantities (8.14) are the components of two 3 × 3 diagonal
matrices with the diagonal elements

A11 = 0, B11 =
rgr

(rgr − ρ) ρ2
,

A22 =
rgr (rgr − ρ)

ρ2
, B22 =

rgr (3 rgr − 2 ρ)

4 (rgr − ρ) ρ
, (8.15)

A33 =
rgr (rgr − ρ) sin2 θ

ρ2
, B33 =

rgr (3 rgr − 2 ρ) sin2 θ

4 (rgr − ρ) ρ
.

Now we are ready to check the validity of equations (6.1),
(6.2) and (6.3) for the metric (8.6) and the function (8.7). Due to
(8.3) all components of the tensor field b in (6.1), (6.2), and (6.3)
do vanish. It immediately follows that the equations (6.2) are
satisfied provided that Ti0 = 0. Further, through (8.10) and (8.3)
we conclude that the equation (6.3) is satisfied provided T00 = 0
and due to the additional assumption Λ = 0. We proceed to
equations (6.1). Due to the relationships (8.3), (8.10), and (8.14)
obtained above, the equations (6.1) are reduced to the form

Bij − Aij + Rij + Λ Gij =
8 π γ

c4
gr

Tij. (8.16)

Applying (8.15) and (8.9) to (8.16), we conclude that the equa-
tions (6.1) are satisfied under the condition Tij = 0 and under
the assumption that Λ = 0. The result obtained is formulated as
the following theorem.

Theorem 8.1. The three-dimensional Schwarzschild metric

(8.6) and the scalar function (8.7) satisfy the gravitational field

equations (6.1), (6.3), and (6.2) with zero right-hand sides, i.e., in

the absence of matter, within the framework of a cosmology with

zero cosmological constant Λ = 0.

§ 9. Coordinate covariance of the gravity equations.

Coordinate covariance of equations of geometric nature is

CopyRight c© Sharipov R.A., 2025.
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usually defined as the preservation of the form of these equations
when replacing some coordinates with others and simultaneously
replacing the functions included in them with others according to
certain rules. A typical example of coordinate covariant equations
are differential equations for the components of tensor fields
written using the operations of tensor multiplication, contraction,
and covariant differentiation (see [53]). The gravitational field
equations (6.1), (6.2), and (6.3) belong to this class of coordinate
covariant equations. They exhibit the property of coordinate
covariance with respect to replacing some comoving coordinates
with others (see (3.3) in Chapter I).

§ 10. Covariance of the gravity equations

with respect to scaling of membrane time.

The membrane time scaling transformations are given by the
formulas (5.1) in the first chapter of the book. Taking into
account (2.2), they can be written as follows:

x̃0 = x̃0(x0), x0 = x0(x̃0). (10.1)

The transformations (10.1) do not affect the spacial comoving
coordinates in (2.2). Therefore, we can write























x̃0 = x̃0(x0),

x̃1 = x1,

x̃2 = x2,

x̃3 = x3,























x0 = x0(x̃0),

x1 = x̃1,

x2 = x̃2,

x3 = x̃3.

(10.2)

The four-dimensional metric (2.6) obeys the standard law of
transformation for the components of a tensor field of valence
(0, 2) under the transformations (10.2):

Gij =

3
∑

k=0

3
∑

q=0

∂x̃k

∂xi

∂x̃q

∂xj
G̃kq, (10.3)
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The components of the energy-momentum tensor in the right-
hand sides of the equations (6.1), (6.2), and (6.3) obey the same
law. Therefore we can write a formula similar to (10.3):

Tij =

3
∑

k=0

3
∑

q=0

∂x̃k

∂xi

∂x̃q

∂xj
T̃kq. (10.4)

Due to the special form of the transformations (10.2) the formulas
(10.3) preserve the block-diagonal form of the matrix (2.6). These
formulas can be divided into spacial and temporal parts. The
spacial part has the form

gij(x
0, x1, x2, x3) = g̃ij(x̃

0(x0), x1, x2, x3), (10.5)

where 1 6 i, j 6 3. The temporal part has the form

g00(x
0, x1, x2, x3) = (x̃0(x0)′)2 g̃00(x̃

0(x0), x1, x2, x3). (10.6)

Let’s denote through ξ the derivative of the function x̃0(x0) in
(10.1). Then the formulas (10.5) and (10.6) can be rewritten as

g00 = ξ2 g̃00, gij = g̃ij. (10.7)

Unlike (10.3), the formula (10.4) is divided not into two, but
into three parts. Two of them have the form

T00 = ξ2 T̃00, Tij = T̃ij for 1 6 i, j 6 3. (10.8)

The third part of the formula (10.4) is written as follows:

Ti0 = ξ T̃i0 and T0i = ξ T̃0i for 1 6 i 6 3. (10.9)

The transformations (10.7), (10.8) and (10.9) can be extended
to all terms in the gravity equations (6.1), (6.2) and (6.3). From
(10.7) we derive the equality

gij = g̃ij. (10.10)
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Then, applying (10.7) and (10.10) to (4.8), we get

bij = ξ b̃ij, bk
q = ξ b̃k

q . (10.11)

Differentiating the first relationship (10.7) with respect to the
variable x0, we find that

∂g00

∂x0
= ξ3 ∂g̃00

∂x̃0
+ 2 ξ ξ′ g̃00. (10.12)

Similarly, differentiating the relationships (10.11) with respect to
the variable x0, we derive the relationships

∂bij

∂x0
= ξ2 ∂b̃ij

∂x̃0
+ ξ′ b̃ij ,

∂bk
q

∂x0
= ξ2

∂b̃k
q

∂x̃0
+ ξ′ b̃k

q . (10.13)

The next step is to apply the second relationship (10.7), the
relationships (10.2), and the relationship (10.10) to the formula
(4.1). As a result, we obtain the transformation rule for the
three-dimensional connection components Γk

ij :

Γk
ij = Γ̃k

ij . (10.14)

The transformation rule (10.14) together with (10.2) yield

∇i g00 = ξ2 ∇i g̃00, ∇ij g00 = ξ2 ∇ij g̃00. (10.15)

Similarly, applying the relationships (10.14) and (10.2) to (10.11),
we get the following formulas:

∇ibkq = ξ∇ib̃ij , ∇ib
k
q = ξ∇ib̃

k
q . (10.16)

The transformations (10.2), (10.7), (10.10), and (10.14) applied
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to the relationships (4.14), (4.15), and (5.3) yield

Rij = R̃ij, R = R̃. (10.17)

Theorem 10.1. The gravity equations (6.1), (6.2), and (6.3)
are covariant with respect to the transformations (10.2), (10.7),
(10.8), (10.9), (10.10), (10.11), (10.12), (10.13), (10.14), (10.15),
(10.16), and (10.17), which are induced by the membrane time

scaling transformations(10.1).

The proof of Theorem 10.1 consists in direct calculations using
the formulas listed in the theorem.



CHAPTER III

LAGRANGIAN APPROACH TO DERIVING

THE GRAVITATIONAL FIELD EQUATIONS.

§ 1. Action integral for the gravitational field.

To maintain continuity between Einstein’s theory of relativity
and the new theory considered in this book we have retained the
concept of spacetime, although we have deprived it of its status
as a four-dimensional physical continuum (see § 2 in Chapter I).
The action of the gravitational field in general relativity is given
by the four-dimensional integral

Sgr = −
c3
gr

16 π γ

∫

(r + 2 Λ)
√
− det G d4x, (1.1)

see [3]. We shall use the action (1.1), rewriting it in a three-
dimensional form in terms of comoving coordinates and mem-
brane time (see § 3 and § 5 in Chapter I), as it was done in [29].
Due to (2.6) in Chapter II we obtain

√
− det G =

√

g00

√

det g . (1.2)

Substituting (1.2) into the formula (1.1) yields

Sgr = −
c4
gr

16 π γ

∫∫

(r + 2 Λ)
√

det g
√

g00 d3x dt. (1.3)

For the four-dimensional scalar curvature r the formula (5.2) was
derived in Chapter II. Taking into account the formulas (2.2)
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from Chapter II, this formula can be rewritten as follows:

r = g−2
00

ġ00

cgr

3
∑

k=1

bk
k + g−1

00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −

− g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00 ∇q g00 − 2 g−1
00

3
∑

k=1

ḃk
k

cgr

−

−R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q b

q
k − g−1

00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(1.4)

Traditionally the action integrals of physical theories contain
the dynamical variables of these theories and their first deriva-
tives with respect to time. In the formula (1.4) we see a term

with ḃk
k. Applying the formulas (4.8) and (2.2) from Chapter II,

we obtain the following formula:

ḃij =
1

2 cgr

g̈ij . (1.5)

Due to (1.5) the term with ḃk
k contains the second derivatives of

the dynamic variables with respect to time. Such a term must be
excluded from the action integral for the gravitational field (1.3).
This was done in [29].

§ 2. Reduction of the action integral.

Let’s select the first and the fourth terms on the right side of
formula (1.4). When we substitute them into the integral (1.3),
we get the following integral over time:

I =

u
∫

v

(

g−2
00

ġ00

cgr

3
∑

k=1

bk
k − 2 g−1

00

3
∑

k=1

ḃk
k

cgr

)

√

det g
√

g00 dt. (2.1)

The integral (2.1) can be transformed to the form

I =

u
∫

v

(

g
−3/2
00

ġ00

cgr

3
∑

k=1

bk
k − 2 g

−1/2
00

3
∑

k=1

ḃk
k

cgr

)

√

det g dt. (2.2)
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Further transformation of the integral (2.2) using integration by
parts yields the following formulas:

I =

u
∫

v

∂

∂t

(

−2 g
−1/2
00

3
∑

k=1

bk
k

cgr

)

√

det g dt = −2 g
−1/2
00 ·

·
3
∑

k=1

bk
k

cgr

√

det g

u

v

+

u
∫

v

2 g
−1/2
00

3
∑

k=1

bk
k

cgr

∂(
√

det g )

∂t
dt.

(2.3)

The integral term in (2.3) can be transformed using Jacobi’s
formula for differentiating a determinant (see [54]):

∂(
√

det g )

∂t
=

1

2

3
∑

k=1

3
∑

q=1

gkq ∂gkq

∂t

√

det g . (2.4)

Applying the formula (2.4) and the formulas (4.8) and (2.2) from
Chapter II to the integral (2.3), we get

I = −2 g
−1/2
00

3
∑

k=1

bk
k

cgr

√

det g

u

v

+

+

u
∫

v

2 g
−1/2
00

3
∑

k=1

3
∑

q=1

bk
k bq

q

√

det g dt.

(2.5)

The non-integral term in the formula (2.3) and the same term in
the formula (2.5) can be omitted since such terms do not affect
the differential equations derived from the action integrals. Upon
omitting the non-integral term in (2.5) due to (2.5) the action
integral (1.3) is transformed to the form

Sgr = −
c4
gr

16 π γ

∫∫

(ρ + 2 Λ)
√

det g
√

g00 d3x dt, (2.6)

CopyRight c© Sharipov R.A., 2025.
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where the scalar function ρ is given by the formula

ρ = g−1
00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −
g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ·

· ∇k g00 ∇q g00 − R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

+ g−1
00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(2.7)

Unlike the original action integral (1.3), the action integral (2.6)
contains only first-order time derivatives of the dynamic variables
gij and g00 associated with the gravitational field.

§ 3. Lagrangian of the gravitational field

and Lagrangian of matter.

It is known that the action integrals in field theories are time
integrals of Lagrangians, and Lagrangians are integrals of the
densities of Lagrangians over spatial variables. Therefore, we
write (2.6) in the following form:

Sgr =

∫

Lgr dt, Lgr =

∫

Lgr

√

det g d3x. (3.1)

Matter has its own action integral and its own Lagrangian. We
write them as follows:

Smat =

∫

Lmat dt, Lmat =

∫

Lmat

√

det g d3x. (3.2)

The density of the Lagrangian in (3.1) is given by the formula

Lgr = −
c4
gr

16 π γ

√

g00 (ρ + 2 Λ), (3.3)
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where ρ is taken from (2.7). The square root of g00 is inherited
from the four-dimensional action. Therefore here in the three-
dimensional approach we do not include it in (3.1) and refer it to
the Lagrangian density (3.3).

Due to the formula (2.7) the density of the Lagrangian (3.3)
depends on g00 and gij , and on the time derivatives of these dy-
namic variables. The time derivatives of the metric components
gij are replaced by bij by virtue of the formula (4.8) and the
formula (2.2) from Chapter II. Therefore

Lgr = Lgr(g, ġ, g,b). (3.4)

Here g and ġ represent g00 and ġ00, while g and b represent gij

and bij. The density of the Lagrangian of matter may depend
on some additional dynamical variables describing the state of
matter. We denote these dynamical variables by Q1, . . . , Qn and
their time derivatives by Q̇1, . . . , Q̇n:

Q̇i =
∂Qi

∂t
. (3.5)

The relationships (3.5) are similar to the relationships (4.8) from
Chapter II. Based on them we write

Lmat = Lmat(g, ġ, g,b,Q, Q̇). (3.6)

Each argument in the argument lists of Lgr and Lmat in (3.4) and
(3.6) represents not only the corresponding group of dynamic
variables, but also some finite number of their derivatives of
various orders with respect to the spatial variables x1, x2, x3.

The total action integral of the gravitational field and matter
is the sum of the integrals (3.1) and (3.2):

S =

∫

L dt, L =

∫

L
√

det g d3x, (3.7)
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where
L = Lgr + Lmat. (3.8)

The next step in the development of the theory is to apply the
principle of least action1 (see [55]) to the action integral S in the
formulas (3.7). Applying this principle formally, we obtain three
groups of differential equations. The first group of equations is

− 1

2 cgr

∂

∂t

( δL
δbij

)

g,ġ,g

Q,Q̇

− 1

2

( δL
δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q +

+
( δL

δgij

)

g,ġ,b

Q,Q̇

= 0, where 1 6 i, j 6 3.

(3.9)

This group of equations is associated with the dynamic variables
gij and bij . The second group of equations is associated with the
dynamic variables g00 and ġ00:

− ∂

∂t

( δL
δġ00

)

g,g,b

Q,Q̇

− cgr

( δL
δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

+
( δL

δg00

)

ġ,g,b

Q,Q̇

= 0.

(3.10)

This group of equations consists of the single equation (3.10).
The third group of equations is related to matter. It is associated
with the dynamic variables Q1, . . . , Qn and Q̇1, . . . , Q̇n and
describes the dynamics of these variables over time:

− ∂

∂t

( δL
δQ̇i

)

g,ġ,g

b,Q̇

− cgr

( δL
δQ̇i

)

g,ġ,g
b,Q

3
∑

q=1

bq
q +

+
( δL

δQi

)

g,ġ,g

b,Q̇

= 0, where 1 6 i 6 3.

(3.11)

1 The principle of least action would be more correctly called the principle

of stationary action since minimal action is never required in fact.
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The equations (3.9) and (3.10) describe the evolution of the grav-
itational field, while the equations (3.11) describe the evolution
of matter.

Below we shall not transform the equations (3.11) since in this
book the variables Q1, . . . , Qn are not specified and there are
no specific formulas for the density of the Lagrangian of matter
Lmat in (3.2) and (3.8). As for equations (3.9) and (3.10), we
shall transform them below. Let us denote

δLmat

δgij
= − 1

2 cgr

∂

∂t

(δLmat

δbij

)

g,ġ,g

Q,Q̇

−

− 1

2

(δLmat

δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q +

(δLmat

δgij

)

g,ġ,b

Q,Q̇

, (3.12)

δLmat

δgij
= −

3
∑

k=1

3
∑

q=1

δLmat

δgkq
gki gqj. (3.13)

In addition to the formula (3.12) and the formula (3.13) we
consider the following formulas:

δLmat

δg00

= − ∂

∂t

(δLmat

δġ00

)

g,g,b

Q,Q̇

−

− cgr

(δLmat

δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

(δLmat

δg00

)

ġ,g,b

Q,Q̇

, (3.14)

δLmat

δg00
= −δLmat

δg00

g2
00. (3.15)

Using (3.7) and applying (3.12) to (3.9), we derive

− 1

2 cgr

∂

∂t

(δLgr

δbij

)

g,ġ,g

Q,Q̇

− 1

2

(δLgr

δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q +

+
(δLgr

δgij

)

g,ġ,b

Q,Q̇

= −δLmat

δgij
.

(3.16)
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Similarly, using (3.7) and applying the formula (3.14) to the
equation (3.10), we derive the following equation:

− ∂

∂t

(δLgr

δġ00

)

g,g,b

Q,Q̇

− cgr

(δLgr

δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

+
(δLgr

δg00

)

ġ,g,b

Q,Q̇

= −δLmat

δg00

.

(3.17)

Now it only remains to derive explicit expressions for the left
hand sides in the equations (3.16) and (3.17). To do this we use
the formulas (3.1), (3.3) and (2.7).

§ 4. Equations for the three-dimensional metric.

In implicit form the differential equations that we need for the
three-dimensional metric gij are written as the Euler-Lagrange
equations (3.16). To make them explicit we need to calculate
the partial variational derivatives in the left hand side of the
equations (3.16). We introduce small variations to the dynamic
variables bij using the following formula:

b̂ij = bij(t, x
1, x2, x3) + ε hij(t, x

1, x2, x3). (4.1)

Here ε → 0 is a small parameter, and hij(t, x
1, x2, x3) are arbi-

trary smooth functions with compact support (see [56]). In this
case, the partial variational derivatives of the Lagrangian density
Lgr with respect to bij are defined by the formula

L̂gr = Lgr + ε

∫ 3
∑

i=1

3
∑

j=1

(δLgr

δbij

)

g,ġ,g

Q,Q̇

·

· hij

√

det g d3x + . . . ,

(4.2)

where Lgr is taken from (3.1) and L̂gr is the result of substituting

b̂ig for bij in Lgr. The density of the Lagrangian Lgr in (4.2) is
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given by (3.3). It depends on bij only through the last two terms
in the right hand side of the formula (2.7) for ρ. Similar terms
are present in the formula (2.6) in [18]. Therefore we can apply
the formula (6.3) from [18] upon slightly modifying it:

(δLgr

δbij

)

g,ġ,g

Q,Q̇

=
c4
gr g

−1/2
00

8 π γ

(

bij −
3
∑

k=1

bk
k gij

)

. (4.3)

Now, according to (3.16), we must differentiate the partial
variational derivative (4.3) with respect to time t:

− 1

2 cgr

∂

∂t

(δLgr

δbij

)

g,ġ,g

Q,Q̇

=
c3
gr g

−3/2
00

16 π γ

(

bij

2
−

3
∑

k=1

bk
k

gij

2

)

·

· ġ00 −
c4
gr g

−1/2
00

16 π γ

(

1

cgr

ḃij −
3
∑

k=1

1

cgr

ḃk
k gij +

3
∑

k=1

2 bk
k bij

)

.

(4.4)

In deriving the formula (4.4) we used the following formula for
differentiating the inverse matrix:

ġij = −
3
∑

k=1

3
∑

q=1

gik ġkq gqj . (4.5)

Along with (4.5), when deriving (4.4), we used the formulas (4.8)
and (2.2) from Chapter II to calculate ġkq.

The second term in the left hand side of the formula (3.16) is
transformed as follows:

−1

2

(δLgr

δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q =

= −
c4
gr g

−1/2
00

16 π γ

( 3
∑

k=1

bk
k bij −

3
∑

k=1

3
∑

q=1

bk
k bq

q gij

)

.

(4.6)



§ 4. EQUATIONS FOR THE METRIC. 49

The third term in the left hand side of (3.16) contains the
partial variational derivative of Lgr with respect to gij . To
calculate this partial variational derivative we introduce a small
variation of the metric:

ĝij = gij(t, x
1, x2, x3) + ε hij(t, x

1, x2, x3). (4.7)

Despite the relationships (4.8) and (2.2) from Chapter II, the
variations (4.1) and (4.7) are assumed to be independent. Here
again ε → 0 is a small parameter and hij(t, x

1, x2, x3) are ar-
bitrary smooth functions with compact support. The partial
variational derivative of the Lagrangian density Lgr with respect
to gij is defined by the formula

L̂gr = Lgr + ε

∫ 3
∑

i=1

3
∑

j=1

(δLgr

δgij

)

g,ġ,b

Q,Q̇

·

· hij

√

det g d3x + . . . .

(4.8)

The second integral Lgr in (3.1) after substituting (3.3) into it
and after applying (2.7) is broken down into six integrals:

Lgr = L1 + L2 + L3 + L4 + L5 + L6. (4.9)

The first of these integrals has the form

L1 = −
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−1/2
00 ∇kq g00

√

det g d3x. (4.10)

The second term in the right side of (4.9) is similar to (4.10):

L2 =
c4
gr

16 π γ

∫ 3
∑

k=1
q=1

gkq g
−3/2
00

2
∇k g00 ∇q g00

√

det g d3x. (4.11)

CopyRight c© Sharipov R.A., 2025.
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The third term in the right hand side of the formula (4.9)
contains the scalar curvature R:

L3 =
c4
gr

16 π γ

∫

g
1/2
00 R

√

det g d3x. (4.12)

The fourth and fifth terms in the right hand side of the formula
(4.9) are similar to each other:

L4 =
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−1/2
00 bk

q b
q
k

√

det g d3x, (4.13)

L5 = −
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−1/2
00 bk

k bq
q

√

det g d3x. (4.14)

The sixth term in the right hand side of the formula (4.9) contains
the cosmological constant:

L6 = −
c4
gr

16 π γ

∫

g
1/2
00 2 Λ

√

det g d3x. (4.15)

In order to obtain an explicit expression for the partial variational
derivative in (4.8) we need to substitute the expression (4.7) for
gij in each of the integrals (4.10), (4.11), (4.12), (4.13), (4.14),
(4.15) and then expand each of them in terms of the small
parameter ε up to first order terms.

In the formula (4.10) there is the second order covariant
derivative ∇kq g00. It is calculated through the components Γs

kq

of the metric connection for the metric (2.7) from Chapter II:

∇kq g00 =
g00

∂xk ∂xq
−

3
∑

s=1

Γs
kq

g00

∂xs
. (4.16)

The connection components are given by the Levi-Civita formula:

Γs
kq =

1

2

3
∑

r=1

gsr

(

∂grq

∂xk
+

∂gkr

∂xq
− ∂gkq

∂xr

)

(4.17)



§ 4. EQUATIONS FOR THE METRIC. 51

(see § 7 from Chapter III in [53]). Applying the formula (4.7) to
the quantity gsr in (4.17), we obtain

ĝsr = gsr − ε

3
∑

k=1

3
∑

q=1

gsk hkq gqr + . . . . (4.18)

By ellipses in (4.2), (4.8) and (4.18) we denote terms of higher
orders in the small parameter ε. The formula (4.18) is similar
to the formula (4.5). Applying the formulas (4.7) and (4.18) to
(4.17), we derive the formula

Γ̂s
kq = Γs

kq +
ε

2

3
∑

r=1

gsr (∇k hrq + ∇q hkr − ∇r hkq)+ . . . . (4.19)

Now we apply the formula (4.19) to (4.16). This yields

∇̂kq g00 = ∇kq g00 −
ε

2

3
∑

r=1

3
∑

s=1

gsr
(

∇k hrq +

+∇q hkr − ∇r hkq

)

∇s g00 + . . . .

(4.20)

In addition to the second covariant derivative (4.16) the integral

L1 in (4.10) contains gkq and the square root
√

det g . The
expression gkq is transformed using the formula (4.18). And for

the square root
√

det g we write

√

det ĝ =
√

det g +
ε

2

3
∑

r=1

3
∑

s=1

grs hrs

√

det g + . . . . (4.21 )

Like the time derivative in the formula (2.4), the above for-
mula (4.21) is derived using Jacobi’s formula for differentiating
determinants (see [54]).

Now we apply the formulas (4.18), (4.20) and (4.21) to the
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integral (4.10). As a result we obtain the following formula:

L̂1 = L1 +
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

g
−1/2
00

(

gik gqj − 1

2
gkq gij

)

·

· ∇kq g00 hij

√

det g d3x +
c4
gr ε

16 π γ

∫ 3
∑

k=1
q=1

3
∑

r=1
s=1

g
−1/2
00

gkq gsr

2
·

·
(

∇k hrq + ∇q hkr − ∇r hkq

)

∇s g00

√

det g d3x + . . . .

(4.22)

The second integral in the formula (4.22) is transformed by
means of integration by parts:

L̂1 = L1 +
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

g
−1/2
00

(

gik gqj − 1

2
gkq gij

)

·

· ∇kq g00 hij

√

det g d3x −
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

(2 gik gqj −

− gij gkq)∇kq(g
1/2
00 ) hij

√

det g d3x + . . . .

(4.23)

Integration by parts in spaces with a Riemannian metric is based
on the following formula:

∫

Ω

3
∑

k=1

∇kzk
√

det g d3x =

∫

∂Ω

g(z,n) dS. (4.24)

This formula (4.24) is a three-dimensional version of formula
(4.14) from Chapter IV in [3]. Note that the second covariant

derivative ∇kq(g
1/2
00 ) can be written as

∇kq(g
1/2
00 ) =

1

2
g
−1/2
00 ∇kqg00 −

1

4
g
−3/2
00 ∇kg00 ∇qg00. (4.25)
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Applying the relationship (4.25) to (4.23), we obtain

L̂1 = L1 +
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

g
−3/2
00

2

(

gik gqj − 1

2
gkq gij

)

·

· ∇k g00 ∇q g00 hij

√

det g d3x + . . . .

(4.26)

The second integral (4.11) is simpler than the first one, since
the covariant derivatives ∇k g00 and ∇q g00 do not use the con-
nection components (4.17). Applying the formulas (4.18) and
(4.21) to this integral, we derive

L̂2 = L2 −
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

g
−3/2
00

2

(

gik gqj − 1

2
gkq gij

)

·

· ∇k g00 ∇q g00 hij

√

det g d3x + . . . .

(4.27)

The third integral (4.12) is the most complicated. It contains
the three-dimensional scalar curvature R. The scalar curvature
R is calculated in several steps. First, the curvature tensor is cal-
culated. The components of the curvature tensor are determined
by the following formula:

Rk
qij =

∂Γk
jq

∂ri
−

∂Γk
iq

∂rj
+

3
∑

s=1

Γk
is Γs

jq −
3
∑

s=1

Γk
js Γs

iq (4.28)

(see the formula (1.1) in chapter V of the book [3]. Next, the
formula (4.19) is applied to (4.28). This yields

R̂k
qij = Rk

qij + ε
(

∇iY
k

jq − ∇jY
k
iq

)

+ . . . , (4.29)

where the following notations are made:

Y s
kq =

1

2

3
∑

r=1

gsr (∇k hrq + ∇q hkr −∇r hkq) . (4.30)
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The Ricci tensor is calculated using the curvature tensor. The
components of the Ricci tensor are defined by the formula

Rqj =

3
∑

k=1

Rk
qkj . (4.31)

Applying the formula (4.29) to the formula (4.31), we obtain

R̂qj = Rqj + ε

3
∑

k=1

(

∇kY k
jq −∇jY

k
kq

)

+ . . . . (4.32)

The scalar curvature is calculated using the Ricci tensor

R =

3
∑

q=1

3
∑

j=1

gqj Rqj . (4.33)

Applying (4.18) and (4.32) to the formula (4.33), we obtain

R̂ = R − ε

3
∑

i=1

3
∑

j=1

Rij hij + ε

3
∑

k=1

∇kZk + . . . , (4.34)

where the following notations are made:

Zk =

3
∑

q=1

3
∑

j=1

(

gjq Y k
jq − gkq Y

j
jq

)

. (4.35)

Now we are ready to apply the formula (4.34) to the third
integral L3 in (4.12). Along with the formula (4.34) we apply the
formula (4.21). As a result, we obtain

L̂3 = L3 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2
00

(

Rij − R

2
gij

)

hij ·

·
√

det g d3x +
c4
gr ε

16 π γ

∫ 3
∑

k=1

g
1/2
00 ∇kZk

√

det g d3x + . . . .

(4.36)
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The second integral in the right side of the formula (4.36) is
transformed by means of integration by parts:

L̂3 = L3 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2
00

(

Rij − R

2
gij

)

hij ·

·
√

det g d3x −
c4
gr ε

16 π γ

∫ 3
∑

k=1

Zk ∇k(g
1/2
00 )

√

det g d3x + . . . .

(4.37)

In order to make the second integral in (4.37) explicit, we evaluate
Zk explicitly by substituting (4.30) into (4.35). This yields

Zk =

3
∑

q=1

∇q hkq −
3
∑

q=1

3
∑

r=1

gkq ∇q hr
r . (4.38)

Before substituting the formula (4.38) into (4.37) we transform
this formula in the following way:

Zk =

3
∑

q=1

3
∑

j=1

3
∑

i=1

(

gki gjq ∇q hij − gkq gij ∇q hij

)

. (4.39)

Now we substitute the formula (4.39) into the formulas (4.37)
and apply integration by parts:

L̂3 = L3 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2
00

(

Rij − R

2
gij

)

hij ·

·
√

det g d3x +
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

(

gki gjq −

− gkq gij
)

∇kq(g
1/2
00 ) hij

√

det g d3x + . . . .

(4.40)

The integral L4 in (4.13) is much simpler than the previous
one. This is because it does not contain the spatial derivatives of
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the metric gij . Before applying (4.18) and (4.21) to it we write
the integral in (4.13) as follows:

L4 =
c4
gr

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2
00 gki biq ·

· gqj bjk

√

det g d3x.

(4.41)

Then, applying (4.18) and (4.21) to (4.41), we get

L̂4 = L4 +
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

g
−1/2
00 bk

q b
q
k

gij

2
hij

√

det g d3x−

−
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1

g
−1/2
00 (bik bj

k + bjk bi
k) hij

√

det g d3x + . . . .

(4.42)

The integral L5 in (4.14) is transformed in a similar way. First
we rewrite it as follows:

L5 = −
c4
gr

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2
00 gik bik ·

· gqj bqj

√

det g d3x.

(4.43)

Next, applying (4.18) and (4.21) to (4.43), we obtain

L̂5 = L5 +
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1

2 g
−1/2
00 bk

k bij hij

√

det g d3x−

−
c4
gr ε

16 π γ

∫ 3
∑

i=1
j=1

3
∑

k=1
q=1

g
−1/2
00 bk

k bq
q

gij

2
hij

√

det g d3x + . . . .

(4.44)
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The integral L6 in (4.15) is the simplest of the six integrals in
(4.9). Applying the formula (4.21) to it, we obtain

L̂6 = L6 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2
00 2 Λ

gij

2
·

· hij

√

det g d3x + . . . .

(4.45)

Now we can put together the formulas (4.26), (4.27), (4.40),
(4.42), (4.44), and (4.45) and derive a formula for the desired
partial variational derivative

(δLgr

δgij

)

g,ġ,b

Q,Q̇

=
c4
gr g

−1/2
00

16 π γ

( 3
∑

k=1

3
∑

q=1

bk
q b

q
k

gij

2
−

−
3
∑

k=1

(bik b
j
k + bjk bi

k) +

3
∑

k=1

2 bk
k bij −

3
∑

k=1

3
∑

q=1

bk
k ·

· bq
q

gij

2

)

−
c4
gr g

1/2
00

16 π γ

(

Rij − R

2
gij + Λ gij

)

+

+
c4
gr

16 π γ

3
∑

k=1

3
∑

q=1

(

gki gjq − gkq gij
)

∇kq(g
1/2
00 ).

(4.46)

The next step is to put together the formulas (4.4), (4.6), and
(4.46) and substitute them into the equation (3.15). This results
in the following equation:

g−2
00

2 cgr

( 3
∑

k=1

bk
k gij − bij

)

ġ00 +
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij −

− gki gjq
)

∇kq g00 −
g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − gki gjq
)

·

· ∇k g00 ∇q g00 + g−1
00

(

1

cgr

ḃij −
3
∑

k=1

1

cgr

ḃk
k gij +

3
∑

k=1

(bik ·

(4.47)
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· bj
k + bjk bi

k) −
3
∑

k=1

3
∑

q=1

bk
q b

q
k

gij

2
−

3
∑

k=1

3
∑

q=1

bk
k bq

q

gij

2
+

+

3
∑

k=1

bk
k bij

)

+ Rij − R

2
gij + Λ gij =

16 π γ

c4
gr g

1/2
00

δLmat

δgij
.

The equation (4.47) and the equation (6.1) from Chapter II differ
in the placement of the indices i and j. To compare the equation
(4.47) with the equation (6.1) in Chapter II we need to lower
the indices i and j in the equation (4.47). In performing this
procedure we use the relationship

ḃij =

3
∑

k=1

3
∑

q=1

gik ḃkq gqj −
3
∑

k=1

2 cgr (bik b
j
k + bjk bi

k). (4.48)

In order to derive the relationship (4.48) the formulas (4.8) and
(2.2) from Chapter II are used. Now, applying the formulas (4.48)
and (3.13) to the equation (4.47) when lowering the indices i and
j, we obtain the following equation:

g−2
00

2 cgr

( 3
∑

k=1

bk
k gij − bij

)

ġ00 +
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij −

−δk
i δ

q
j

)

∇kq g00 −
g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

·

· ∇k g00 ∇q g00 + g−1
00

(

1

cgr

ḃij −
3
∑

k=1

1

cgr

ḃk
k gij −

3
∑

k=1

(bki ·

· bk
j + bkj bk

i ) −
3
∑

k=1

3
∑

q=1

bk
q b

q
k

gij

2
−

3
∑

k=1

3
∑

q=1

bk
k bq

q

gij

2
+

+

3
∑

k=1

bk
k bij

)

+ Rij −
R

2
gij + Λ gij = − 16 π γ

c4
gr g

1/2
00

δLmat

δgij
.

(4.49)
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Comparing (4.49) with the equation (6.1) in Chapter II, we get

Tij = − 2

g
1/2
00

δLmat

δgij
for 1 6 i, j 6 3. (4.50)

In the left hand side of the relationship (4.50) we see the com-
ponents of the energy-momentum tensor that enter the equation
(6.1) in Chapter II. The relationship (4.50) expresses these com-
ponents of the energy-momentum tensor, which are a legacy
of Einstein’s four-dimensional theory, through a purely three-
dimensional density of the Lagrangian of matter (3.6).

Theorem 4.1. The gravity equations (6.1) from Chapter II

are equivalent to the Euler-Lagrange equations (3.16), which are

explicitly written in the form of the equations (4.47) or in the

form of the equations (4.49).

§ 5. Equation for the scalar field g00.

The time-dependent scalar field g00 arises as the diagonal com-
ponent of the block-diagonal four-dimensional metric inherited
from Einstein’s theory, see formulas (2.9) and (2.6) in Chapter II.
It is positive due to the signature (+,−,−,−) of the metric (2.6)
in Chapter II. The field g00 is described by the Euler-Lagrange
equation (3.17). Our goal here is to write this equation in a more
explicit form.

Using the formulas (3.3) and (2.7), we easily note that the
Lagrangian density Lgr does not depend on the time derivative
ġ00. Therefore we have the relationship

(δLgr

δġ00

)

g,g,b

Q,Q̇

= 0. (5.1)

Due to (5.1) the Euler-Lagrange equation (3.17) reduces to

(δLgr

δg00

)

ġ,g,b

Q,Q̇

= −δLmat

δg00

. (5.2)
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To calculate the partial variational derivative in the left hand
side of (5.2) we consider a small variation of the scalar field g00:

ĝ00 = g00(t, x
1, x2, x3) + ε h(t, x1, x2, x3). (5.3)

Here ε → 0 is a small parameter and h(t, x1, x2, x3) is an ar-
bitrary smooth function with compact support (see [56]). The
small variation (5.3) is applied to the Lagrangian Lgr in (3.1).
After that the partial variational derivative of the Lagrangian
density Lgr with respect to g00 is given by the formula

L̂gr = Lgr + ε

∫

(δLgr

δg00

)

ġ,g,b

Q,Q̇

h
√

det g d3x + . . . . (5.4)

Like in § 4 here we split the Lagrangian Lgr into six parts using
(4.9). The integrals L1, L2, L3, L4, L5, and L6 in (4.9) are given
by (4.10), (4.11), (4.12), (4.13), (4.14), and (4.15). Applying
(5.3) to the first of these six integrals, we obtain

L̂1 = L1 −
c4
gr ε

16 π γ

∫ 3
∑

k=1
q=1

gkq g
−1/2
00 ∇kq h

√

det g d3x +

+
c4
gr ε

16 π γ

∫ 3
∑

k=1
q=1

gkq g
−3/2
00

2
∇kq g00 h

√

det g d3x + . . . .

(5.5)

The first integral in (5.5) is transformed integrating by parts:

L̂1 = L1 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq 3 g
−5/2
00

4
∇k g00 ∇q g00 ·

· h
√

det g d3x +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2
00 ·

· ∇kq g00 h
√

det g d3x + . . . .

(5.6)
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Next we move on to the integral L2 in (4.11) and apply the
variation (5.3) to it. This gives

L̂2 = L2 +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2
00 ∇k g00 ∇q ·

· h
√

det g d3x −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq 3 g
−5/2
00

4
·

· ∇k g00 ∇q g00 h
√

det g d3x + . . . .

(5.7)

The first integral in the formula (5.7) is transformed using inte-
gration by parts:

L̂2 = L2 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2
00 ∇kq g00 ·

· h
√

det g d3x +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq 3 g
−5/2
00

4
·

· ∇k g00 ∇q g00 h
√

det g d3x + . . . .

(5.8)

Next in line is the integral L3 in (4.12). Applying the variation
(5.3) to it, we obtain

L̂3 = L3 +
c4
gr ε

16 π γ

∫

g
−1/2
00

2
R h

√

det g d3x + . . . . (5.9)

Next we pass to the integral L4 in (4.13). Applying the variation
(5.3) to this integral, we get

L̂4 = L4 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−3/2
00

2
bk
q b

q
k ·

· h
√

det g d3x + . . . .

(5.10)
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The integral L5 in (4.14) is treated in a similar way. Applying
the variation (5.3) to it, we obtain

L̂5 = L5 +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−3/2
00

2
bk
k bq

q ·

· h
√

det g d3x + . . . .

(5.11)

And finally we arrive to the integral L6 in (4.15). Applying the
variation (5.3) to this integral, we get

L̂6 = L6 −
c4
gr ε

16 π γ

∫

g
−1/2
00 Λ h

√

det g d3x. (5.12)

Now we can put together the formulas (5.6), (5.8), (5.9),
(5.10), (5.11), and (5.12) and apply them all to the formula (5.4).
This gives us the following equality:

(δLgr

δg00

)

ġ,g,b

Q,Q̇

=
c4
gr

16 π γ

g
−1/2
00

2

(

R− 2Λ
)

+

+
c4
gr

16 π γ

g
−3/2
00

2

( 3
∑

k=1

3
∑

q=1

bk
k bq

q −
3
∑

k=1

3
∑

q=1

bk
q b

q
k

)

.

(5.13)

Next, by substituting (5.13) into (5.2) we derive the equation

−1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

+
R

2
g00 − Λ g00 = −16 π γ

c4
gr

g
3/2
00

δLmat

δg00

.

(5.14)

If we recall the relationship g00 = g−1
00 and apply the formula

(3.15) that follows from this relationship to the equation (5.14),
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then the equation (5.14) can be rewritten as follows:

−1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

+
R

2
g00 − Λ g00 =

16 π γ

c4
gr g

1/2
00

δLmat

δg00
.

(5.15)

By comparing the equation (5.15) with the equation (6.3) in
Chapter II, we derive the relationship

T00 =
2

g
1/2
00

δLmat

δg00
. (5.16)

In the left hand side of the relationship (5.16) we see one of
the components of the stress-energy tensor, which enters the
equation (6.3) from Chapter II. The relationship (5.16) expresses
this component T00 of the stress-energy tensor, which is a legacy
of Einstein’s four-dimensional theory, in terms of the purely
three-dimensional density of the matter Lagrangian (3.6).

Theorem 5.1. The gravity equation (6.3) from Chapter II is

equivalent to the Euler-Lagrange equation (3.17), which is explic-

itly written as the equation (5.14) or as the equations (5.15).

Note that equations similar to those of (6.2) in Chapter II
do not arise here within the Lagrangian approach. This justifies
the choice made in Chapter II in favor of the equations (6.1)
and (6.3) and the exclusion of the equations (6.2) from our new
theory of gravity.

§ 6. Generalized coordinates and velocities.

Dynamic variables in the Lagrangian approach are often called
generalized coordinates, while their time derivatives are called
generalized velocities (see [57]). The dynamic variables for the

CopyRight c© Sharipov R.A., 2025.
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gravitational field are the functions gij and g00. In the case of
the function gij, its time derivative is related to the function bij .
From the formulas (4.8) and (2.2) in Chapter II, it follows that

bij =
1

2 cgr

∂gij

∂t
. (6.1)

Due to (6.1) the role of generalized velocities for the dynamic
variables gij is played by the functions bij .

By analogy with the formula (6.1), the following notations
were introduced in [31]:

b00 =
ġ00

cgr

=
1

cgr

∂g00

∂t
, b0

0 = g−1
00 b00. (6.2)

Due to (6.2) the role of the generalized velocity for the dynamic
variable g00 is played by the function b00.

The dependence of the Lagrangian Lgr on the generalized co-
ordinates and generalized velocities is conventionally represented
by the formula (3.4). Taking into account (6.2), this formula now
is rewritten in the following way:

Lgr = Lgr(g, b, g,b). (6.3)

In order to describe matter above in § 3 the additional dy-
namic variables Q1, . . . , Qn and the corresponding generalized
velocities (3.5) were introduced. We denote them through
W1, . . . , Wn, i. e. we set

Wi = Q̇i =
∂Qi

∂t
. (6.4)

Taking into account (6.4), the formula (3.6) is rewritten as

Lmat = Lmat(g, b, g,b,Q,W). (6.5)
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The total Lagrangian is the sum of the gravitational field
Lagrangian and the matter Lagrangian:

L = Lgr + Lmat. (6.6)

The formula (6.6) follows from (3.7) and (3.8). Next, from the
formulas (6.3), (6.5), and (6.6) we derive

L = L(g, b, g,b,Q,W). (6.7)

Each argument in the argument lists of Lgr, Lmat, and L in (3.4),
(6.5), and (6.7) represents not only the corresponding group of
dynamic variables, but also a finite number of their derivatives of
various orders with respect to the spacial variables x1, x2, x3.

§ 7. Legendre transformation

and the density of total energy.

The Legendre transformation is a change of dynamical vari-
ables in which generalized velocities are replaced by generalized
momenta (see [58]). In the case of the present theory the gen-
eralized momenta are calculated as partial variational derivatives
of the total Lagrangian (6.5):

βij =
( δL

δbij

)

g,b,g
Q,W

, β00 =
( δL

δb00

)

g,g,b
Q,W

, P i =
( δL

δWi

)

g,b,g
b,Q

. (7.1)

Using generalized momenta (7.1), the total energy density is
calculated by means of the formula

H =

3
∑

i=1

3
∑

j=1

βij bij + β00 b00 +

n
∑

i=1

P i Wi − L. (7.2)

Let Ω be a three-dimensional domain in the three-dimensional
universe. The energy of the gravitational field and matter fields
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contained in this domain is given by the following integral:

E(Ω) =

∫

Ω

H
√

det g d3x. (7.3)

Our main goal in the next section is to derive a formula for the
time derivative of the integral (7.3).

§ 8. Energy conservation law.

Let us consider a small increment of the time variable t. We
shall write it in the following form:

t̂ = t + ε. (8.1)

Let’s apply (8.1) to all dynamic variables:

ĝij = gij(t̂, x
1, x2, x3), Q̂i = Qi(t̂, x

1, x2, x3), (8.2)

b̂ij = bij(t̂, x
1, x2, x3), Ŵi = Wi(t̂, x

1, x2, x3), (8.3)

β̂ij = βij(t̂, x1, x2, x3), P̂ i = P i(t̂, x1, x2, x3), (8.4)

ĝ00 = g00(t̂, x
1, x2, x3), b̂00 = b00(t̂, x

1, x2, x3), (8.5)

β̂00 = β00(t̂, x1, x2, x3). (8.6)

Applying the relationships (6.1) and (6.4) to (8.2), we obtain

ĝij = gij + 2 cgr ε bij + . . . , Q̂i = Qi + ε Wi + . . . . (8.7)

In the case of (8.3) we use partial derivatives:

b̂ij = bij + ε
∂bij

∂t
+ . . . , Ŵi = Wi + ε

∂Wi

∂t
+ . . . . (8.8)

In the case of (8.4) and (8.6) we apply the relationships (7.1).
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Applying them we derive the following formulas:

β̂ij = βij + ε
∂

∂t

( δL
δbij

)

g,b,g,
Q,W

+ . . . ,

P̂ i = P i + ε
∂

∂t

( δL
δWi

)

g,b,g
b,Q

+ . . . ,

β̂00 = β00 + ε
∂

∂t

( δL
δb00

)

g,g,b
Q,W

+ . . . .

(8.9)

In the case of the formula (8.5) we apply (6.2) and the partial
time derivative of the function b00:

ĝ00 = g00 + cgr ε b00 + . . . , b̂00 = b00 + ε
∂b00

∂t
+ . . . . (8.10)

By ellipses in the formulas (8.7), (8.8), (8.9), (8.10) and further
below we denote terms of higher order with respect to the small
parameter ε → 0.

In addition to the formulas (8.7), (8.8), (8.9), (8.10) we con-
sider the following relationship:

√

det ĝ =
√

det g
(

1 + ε cgr

3
∑

k=1

bk
k + . . .

)

. (8.11)

The relationship (8.11) is derived using the familiar Jacobi’s
formula for differentiating determinants (see [54]) and the rela-
tionship (6.1).

The next step is to apply the time variation (8.1) to the
integral (7.3) taking into account (7.2):

Ê(Ω) =

∫

Ω

( 3
∑

i=1

3
∑

j=1

βij bij + β00 b00 +

n
∑

i=1

P i Wi

)

·

·
√

det ĝ d3x + ε

∫

Ω

3
∑

i=1

3
∑

j=1

(

∂

∂t

( δL
δbij

)

g,b,g
Q,W

bij +
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+
( δL

δbij

)

g,b,g
Q,W

∂bij

∂t

)

√

det g d3x +

+ ε

∫

Ω

n
∑

i=1

(

∂

∂t

( δL
δWi

)

g,b,g
b,Q

Wi +
( δL

δWi

)

g,b,g
b,Q

∂Wi

∂t

)

·

·
√

det g d3x + ε

∫

Ω

(

∂

∂t

( δL
δb00

)

g,g,b
Q,W

b00 +

+
( δL

δb00

)

g,g,b
Q,W

∂b00

∂t

)

√

det g d3x − L̂(Ω) + . . . .

(8.12)

The last term L̂(Ω) in (8.12) is determined by the Lagrangian
density L in the formula (7.2):

L̂(Ω) =

∫

Ω

L̂
√

det ĝ d3x. (8.13)

In order to transform the integral (8.13), it should be noted that
the formulas (8.7), (8.8) and (8.10) are similar to small variations
of the tensor fields g and b, to small variations of the dynamic
variables of matter Q1, . . . , Qn and W1, . . . , Wn, and also to
small variations of the scalar fields g00 and b00 in the sense of the
calculus of variations:

ĝij = gij + ε hij + . . . , Q̂i = Qi + ε hi + . . . ,

b̂ij = bij + ε ηij + . . . , Ŵi = Wi + ε ηi + . . . , (8.14)

ĝ00 = g00 + ε h00 + . . . , b̂00 = b00 + ε η00 + . . . .

The functions hij , hi, ηij, ηi, h00, and η00 in (8.14) are functions
with compact support (see [56]). In the calculus of variations
they apply to the integral over the entire universe:

L =

∫

L
√

det g d3x. (8.15)
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Applying the small variations (8.14) to the integral (8.15) within
the framework of the calculus of variations, we would write

L̂ = L + ε

∫
( 3
∑

i=1

3
∑

j=1

( δL
δbij

)

g,b,g
Q,W

ηij +

+

3
∑

i=1

3
∑

j=1

( δL
δgij

)

g,b,b
Q,W

hij +
( δL

δb00

)

g,g,b
Q,W

η00 +

+
( δL

δg00

)

b,g,b
Q,W

h00 +

n
∑

i=1

( δL
δWi

)

g,b,g
b,Q

ηi +

+

n
∑

i=1

( δL
δQi

)

g,b,g
b,W

hi

)

√

det g d3x + . . . .

(8.16)

The difference between the small variations in (8.7), (8.8), (8.10)
and the small variations in (8.14) is that the small variations
in (8.7), (8.8), (8.10) are not functions with compact support.
For this reason, the analogue of formula (8.16) for the integral
(8.13) will have an additional term containing an integral over
the boundary of the domain Ω:

L̂(Ω) = L(Ω) + ε

∫

Ω

3
∑

i=1

3
∑

j=1

( δL
δbij

)

g,b,g
Q,W

∂bij

∂t
·

·
√

det g d3x + ε

∫

Ω

( n
∑

i=1

( δL
δWi

)

g,b,g
b,Q

∂Wi

∂t
+

+
n
∑

i=1

( δL
δQi

)

g,b,g
b,W

Wi

)

√

det g d3x + ε

∫

Ω

(

( δL
δb00

)

g,g,b
Q,W

·

· ∂b00

∂t
+
( δL

δg00

)

b,g,b
Q,W

cgr b00

)

√

det g d3x +

+ ε

∫

Ω

3
∑

i=1

3
∑

j=1

( δL
δgij

)

g,b,b
Q,W

2 cgr bij

√

det g d3x +

(8.17)
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+ ε

∫

∂ Ω

(

J 1 dx2 ∧ dx3 + J 2 dx3 ∧ dx1 +

+J 3 dx1 ∧ dx2
)
√

det g + . . . .

The last term with the integral over the boundary of the domain
in (8.17) is related to the energy flux across that boundary. We
shall study this term in detail in the next section.

Now we return to the formula (8.12). The square root in
the first integral of the formula (8.12) is transformed using the
formula (8.11). We can then apply the formula (8.11) and the
formula (8.17) to the formula (8.12). In doing so, we take into
account the formulas (4.1) and the Euler-Lagrange equations
(3.9), (3.10), and (3.11). In addition, we take into account the
above notations (6.1), (6.2) and (6.4). As a result of the listed
transformations, the formula (8.12) for the variation of the energy
integral (7.3) is simplified and takes the following form:

Ê(Ω) = E(Ω)− ε

∫

∂ Ω

(

J 1 dx2 ∧ dx3 +

+J 2 dx3 ∧ dx1 + J 3 dx1 ∧ dx2
)
√

det g + . . . .

(8.18)

Now it is the moment to recall that the variation of the energy
integral (8.18) arises as a result of the time increment (8.1).
Therefore it can be calculated directly through the derivative of
the integral (7.3) with respect to time:

Ê(Ω) = E(Ω) + ε
dE(Ω)

dt
+ . . . . (8.19)

Comparing (8.18) and (8.19), we derive

d

dt

∫

Ω

H
√

det g d3x +

∫

∂ Ω

(

J 1 dx2 ∧ dx3 +

+ J 2 dx3 ∧ dx1 + J 3 dx1 ∧ dx2
)
√

det g = 0.

(8.20)
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The surface integral of the second kind in (8.20) can be replaced
by a surface integral of the first kind:

d

dt

∫

Ω

H
√

det g d3x+

∫

∂ Ω

(

J 1 n1+J 2 n2+J 3 n3

)

dS = 0. (8.21)

Here n1, n2, n3 are the covariant components of the unit normal
vector n perpendicular to the boundary of the domain ∂ Ω,
and dS is the area element on this boundary. The quantities
J 1, J 2, J 3 in the formula (8.21) are interpreted as components
of a vector field J. This vector field itself is interpreted as the
total energy flux density:

d

dt

∫

Ω

H
√

det g d3x +

∫

∂ Ω

3
∑

i=1

J i ni dS. (8.22)

The equality (8.22) can be stated in the form of a theorem.

Theorem 8.1. The increment in the amount of the total en-

ergy of the gravitational field and matter fields contained in a

three-dimensional domain Ω per unit time is exactly equal to the

amount of energy entering the domain Ω per unit time through

its boundary ∂ Ω.

In order to transform the integral equality (8.22) into dif-
ferential form, we apply the Ostrogradsky-Gauss formula (see
[59]) together with the formula (8.11). This yields the following
differential relationship:

∂H
∂t

+

3
∑

q=1

cgr H bq
q +

3
∑

i=1

∇iJ i = 0. (8.23)

The first term in (8.23) is the time derivative of the total en-
ergy density of the gravitational field and matter fields. The
third term is the divergence of the total energy flux density
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vector. These two terms are standard. The second term in
(8.23) is the Hubble term. It arises because the volume of the
domain Ω can change even if the boundaries of the domain are
completely immobile due to the expansion or contraction of the
three-dimensional space of the universe itself (see [60]).

§ 9. Flux density of the total energy.

The vector J with the components J 1, J 2, J 3 arose in (8.17)
when deriving an analogue of the formula (8.16) in which small
variations of the dynamic variables are not functions with com-
pact support. We know that the Lagrangian (6.7) depends not
only on the functions listed in its arguments, but also on some
finite number of their partial derivatives with respect to the
spacial variables x1, x2, x3. For this reason, we introduce the
following notations for partial derivatives of the dynamic vari-
ables Q1, . . . , Qn, and W1, . . . , Wn describing matter and for
partial derivatives of the dynamical variables gij, bij , g00, and b00

describing the gravitational field:

Qi[i1 . . . is] =
∂Qi

∂xi1 . . . ∂xis

, Wi[i1 . . . is] =
∂Wi

∂xi1 . . .∂xis

, (9.1)

gij[i1 . . . is] =
∂gij

∂xi1 . . . ∂xis

, bij[i1 . . . is] =
∂bij

∂xi1 . . . ∂xis

, (9.2)

g00[i1 . . . is] =
∂g00

∂xi1 . . .∂xis

, b00[i1 . . . is] =
∂b00

∂xi1 . . . ∂xis

. (9.3)

Let’s select the quantity bij [i1 . . . is] from (9.2) and consider
its occurrence in the Lagrangian (6.7). The variation of the
quantity bij in (8.14) contributes to the variational expansion of
the integral (8.13) in the form of the following expression:

I(b) = ε

∫

Ω

( ∂L
∂bij[i1 . . . is]

√

det g
)

ηij [i1 . . . is] d
3x. (9.4)

Let ιq denote a linear mapping acting upon differential 3-forms



§ 9. FLUX DENSITY OF THE TOTAL ENERGY. 73

and generating differential 2-forms such that

ιq(dx1 ∧ dx2 ∧ dx3) =











dx2 ∧ dx3 if q = 1,

dx3 ∧ dx1 if q = 2,

dx1 ∧ dx2 if q = 3.

(9.5)

Then we can integrate (9.4) by parts. The result is written using
the mapping introduced in (9.5):

ε

∫

Ω

( ∂L
∂bij[i1 . . . is]

√

det g
)

ηij [i1 . . . is] d
3x =

= ε

∫

∂ Ω

( ∂L
∂bij [i1 . . . is]

√

det g
)

ηij[i1 . . . is−1] ·

· ιis
(dx1 ∧ dx2 ∧ dx3) − ε

∫

Ω

∂

∂xis

( ∂L
∂bij[i1 . . . is]

·

·
√

det g
)

ηij [i1 . . . is−1] d
3x.

(9.6)

The last term in (9.6) is similar to the first one. So we can
continue integrating by parts in (9.6) iteratively. The result that
we get upon several steps of integrating by parts is:

I(b) =

s
∑

r=1

ε

∫

∂ Ω

(−1)r−1 ∂r−1

∂xis−r+2 . . .∂xis

( ∂L
∂bij[i1 . . . is]

·

·
√

det g
)

ηij[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+ ε

∫

Ω

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L
∂bij[i1 . . . is]

√

det g
)

ηij d3x.

(9.7)

The last term in (9.7) contributes to the volume integrals in
(8.17). The preceding terms contribute to the boundary integral
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over ∂ Ω in the end of the formula (8.17).
The variation of the metric gij from (9.2) contributes to the

variational expansion of the integral in (8.13) via the expression

I(g) = ε

∫

Ω

( ∂L
∂gij[i1 . . . is]

√

det g
)

hij [i1 . . . is] d
3x. (9.8)

Integrating by parts iteratively in the relationship (9.8), we derive
a formula similar to that in (9.7):

I(g) =

s
∑

r=1

ε

∫

∂ Ω

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂gij [i1 . . . is]

·

·
√

det g
)

hij [i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+ ε

∫

Ω

(−1)s ∂s

∂xi1 . . . ∂xis

( ∂L
∂gij [i1 . . . is]

√

det g
)

hij d3x.

(9.9)

The next two steps are similar to the previous two. The analogues
of formulas (9.4) and (9.8) in the case of dynamic variables
responsible for matter in (9.1) are as follows:

I(W) = ε

∫

Ω

( ∂L
∂Wi[i1 . . . is]

√

det g
)

ηi[i1 . . . is] d
3x,

I(Q) = ε

∫

Ω

( ∂L
∂Qi[i1 . . . is]

√

det g
)

hi[i1 . . . is] d
3x.

(9.10)

Integrating by parts in the relationships (9.10), we obtain formu-
las similar to those in (9.7) and (9.9):

I(W) =

s
∑

r=1

ε

∫

∂ Ω

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂Wi[i1 . . . is]

·
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·
√

det g
)

ηi[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+ ε

∫

Ω

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L
∂Wi[i1 . . . is]

√

det g
)

ηi d3x,

(9.11)

I(Q) =

s
∑

r=1

ε

∫

∂ Ω

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂Qi[i1 . . . is]

·

·
√

det g
)

hi[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+ ε

∫

Ω

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L
∂Qi[i1 . . . is]

√

det g
)

hi d3x.

(9.12)

Next we move on to variations of g00 and b00 from (9.3). Here

I(b) = ε

∫

Ω

( ∂L
∂b00[i1 . . . is]

√

det g
)

η00[i1 . . . is] d
3x,

I(g) = ε

∫

Ω

( ∂L
∂g00[i1 . . . is]

√

det g
)

h00[i1 . . . is] d
3x.

(9.13)

Integrating by parts iteratively the first of the integrals (9.13),
we obtain the following formula:

I(b) =
s
∑

r=1

ε

∫

∂ Ω

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂b00[i1 . . . is]

·

·
√

det g
)

η00[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+ ε

∫

Ω

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L
∂b00[i1 . . . is]

√

det g
)

η00 d3x.

(9.14)

Similarly, integrating by parts iteratively the second of the inte-
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grals (9.13), we obtain a formula similar to (9.14):

I(g) =

s
∑

r=1

ε

∫

∂ Ω

(−1)r−1 ∂r−1

∂xis−r+2 . . .∂xis

( ∂L
∂g00[i1 . . . is]

·

√

det g
)

h00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+ ε

∫

Ω

(−1)s ∂s

∂xi1 . . . ∂xis

( ∂L
∂g00[i1 . . . is]

√

det g
)

h00 d3x.

(9.15)

The quantities ηij, hij , ηi, hi, η00, h00 appearing in formulas
(9.7), (9.9), (9.11), (9.12), (9.14), and (9.15) should be replaced
by the following quantities:

ηij =
∂bij

∂t
, ηi =

∂Wi

∂t
, (9.16)

hij = 2 cgr bij , hi = Wi, (9.17)

h00 = cgr b00, η00 =
∂b00

∂t
. (9.18)

The formulas (9.16), (9.17) and (9.18) are derived by comparing
(8.14) with the formulas (8.7), (8.8) and (8.10).

The last step in calculating the components of the vector J is
to collect the integrals over the boundary of the domain ∂ Ω from
all formulas (9.7), (9.9), (9.11), (9.12), (9.14), (9.15) in a single
formula. Let N be the maximal order of partial derivatives of
the form (9.1), (9.2), (9.3) contained in the Lagrangian L. Then
from the formulas (9.7), (9.9), (9.11), (9.12), (9.14), (9.15) and
from the formula (8.17) we derive

(

J 1 dx2 ∧ dx3 + J 2 dx3 ∧ dx1 + J 3 dx1 ∧ dx2
)
√

det g =

=

3
∑

i=1

3
∑

j=1

N
∑

s=1

s
∑

r=1

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂bij [i1 . . . is]

×
(9.19)
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×
√

det g
)

ηij [i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

3
∑

i=1

3
∑

j=1

N
∑

s=1

s
∑

r=1

(−1)r−1 ∂r−1

∂xis−r+2 . . .∂xis

( ∂L
∂gij[i1 . . . is]

×

×
√

det g
)

hij [i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

n
∑

i=1

N
∑

s=1

s
∑

r=1

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂Wi[i1 . . . is]

×

×
√

det g
)

ηi[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

n
∑

i=1

N
∑

s=1

s
∑

r=1

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂Qi[i1 . . . is]

×

×
√

det g
)

hi[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

N
∑

s=1

s
∑

r=1

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂b00[i1 . . . is]

×

×
√

det g
)

η00[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

N
∑

s=1

s
∑

r=1

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L
∂g00[i1 . . . is]

×

×
√

det g
)

h00[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3).

(9.20)

Note that the substitutions (9.16), (9.17), and (9.18) should be
applied to the formula (9.19) continued in (9.20) as well as to the
previous formulas (9.4), (9.6), (9.7), (9.8), (9.9), (9.10), (9.11),
(9.12), (9.13), (9.14), and (9.15). Note also that partial derivative
operators of the form

∂r−1

∂xis−r+2 . . . ∂xis

CopyRight c© Sharipov R.A., 2025.
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are actually absent from those terms in (9.19) and (9.20) where
r = 1. The same is true for all previous formulas where such
operators are used.

§ 10. Density of the gravitational field energy.

Note that the total Lagrangian L of our theory in (3.7) is the
sum of the gravitational field Lagrangian Lgr in (3.1) and the
matter fields Lagrangian Lmat in (3.2):

L = Lgr + Lmat. (10.1)

The same division into two terms holds for the density of the
total Lagrangian L, which is expressed by the formula (3.8) and
from which the formula (10.1) follows. Therefore, applying (3.8)
to (7.1), (7.2), and (7.3), we obtain

E(Ω) = Egr(Ω) + Emat(Ω). H = Hgr + Hmat. (10.2)

Each of the terms Hgr and Hmat in (10.2) is given by its own
formula, which follows from (7.2). In the case of the density of
the gravitational field energy Hgr this formula has the form

Hgr =

3
∑

i=1

3
∑

j=1

(δLgr

δbij

)

g,b,g
Q,W

bij +
(δLgr

δb00

)

g,g,b
Q,W

b00 +

+

n
∑

i=1

(δLgr

δWi

)

g,b,g
b,Q

Wi − Lgr.

(10.3)

The density of the gravitational field Lagrangian Lgr in (10.3) is
given by the formula (3.3), in which the parameter ρ is defined
by the formula (2.7). The dynamic variables Q1, . . . , Qn and
W1, . . . , Wn, which describe matter, are not included in the
formulas (3.3) and (2.7). From this it follows that

(δLgr

δWi

)

g,b,g
b,Q

= 0. (10.4)



§ 10. DENSITY OF THE GRAVITATIONAL ENERGY. 79

In addition, we see that the quantity b00 is also not included in
the formulas (3.3) and (2.7). Hence

( δL
δb00

)

g,g,b
Q,W

= 0. (10.5)

After applying the formulas (10.4) and (10.5) to the formula
(10.3) it simplifies and takes the form

Hgr =
3
∑

i=1

3
∑

j=1

(δLgr

δbij

)

g,b,g
Q,W

bij − Lgr. (10.6)

We already have an explicit formula for the partial variational
derivative from (10.6). This is the formula (4.3). Applying (4.3)
to (10.6), we get the following formula:

Hgr =
c4
gr g

−1/2
00

8 π γ

( 3
∑

k=1
q=1

bk
q b

q
k −

3
∑

k=1
q=1

bk
k bq

q

)

− Lgr. (10.7)

The next step is to substitute (3.3) into (10.7) and to use the
formula (2.7) for ρ. This gives

Hgr =
c4
gr

16 π γ

√

g00

(

g−1
00

3
∑

k=1
q=1

bk
q b

q
k − g−1

00

3
∑

k=1
q=1

bk
k bq

q −

−R + 2 Λ + g−1
00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −

− g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00 ∇q g00

)

.

(10.8)

The resulting formula (10.8) is an explicit formula for the energy
density of the gravitational field. The amount of energy of the
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gravitational field contained within a three-dimensional domain
Ω is given by an integral similar to the integral (7.3):

Egr(Ω) =

∫

Ω

Hgr

√

det g d3x. (10.9)

The density of the gravitational field energy Hgr in the formula
(10.9) is given by the explicit formula (10.8).

§ 11. Flux density of the gravitational field energy.

As we have already noted above, the total Lagrangian of
our theory L is split into two parts — the Lagrangian of the
gravitational field Lgr and the Lagrangian of the matter fields
Lmat, see formula (10.1). The same holds for the Lagrangian
density, see the formula (3.8). Applying (3.8) to the formula
(9.19), which is continued in (9.20), we conclude that the flux
density vector J is also split into two parts:

J = Jgr + Jmat. (11.1)

The first term in the formula (11.1) can be calculated explicitly.
For this purpose we consider the integral (8.13), replacing the
total Lagrangian density L with Lgr in it:

L̂gr(Ω) =

∫

Ω

L̂gr

√

det ĝ d3x. (11.2)

From (11.2), using the formulas (8.7), (8.8), and (8.10), a formula
similar to the formula (8.17) can be derived. In this case it is
necessary to take into account the relationships (10.4) and (10.5).
In addition to (10.4) and (10.5) there is another relationship

(δLgr

δQi

)

g,b,g
b,W

= 0. (11.3)



§ 11. FLUX DENSITY OF THE GRAVITATIONAL ENERGY. 81

The relationship (11.3) follows from the fact that the formulas
(3.3) and (2.7) do not contain Q1, . . . , Qn. Taking this into
account, we obtain the following relationship:

L̂gr(Ω) = Lgr(Ω) + ε

∫

Ω

3
∑

i=1

3
∑

j=1

(δLgr

δbij

)

g,b,g
Q,W

∂bij

∂t
·

·
√

det g d3x + ε

∫

Ω

3
∑

i=1

3
∑

j=1

(δLgr

δgij

)

g,b,b
Q,W

2 cgr bij ·

·
√

det g d3x + ε

∫

Ω

(δLgr

δg00

)

b,g,b
Q,W

cgr b00 ·

·
√

det g d3x + ε

∫

∂ Ω

(

J 1
gr dx2 ∧ dx3 +

+J 2
gr dx3 ∧ dx1 + J 3

gr dx1 ∧ dx2
)
√

det g + . . . .

(11.4)

From the derivation of the formula (9.19), which is continued
in (9.20), we know that only terms with partial derivatives with
respect to the spacial variables x1, x2, x3 in the Lagrangian
density lead to integrals over the boundary of the domain ∂ Ω.
The term with 2 Λ in (3.3) does not contain such derivatives. The
terms with bk

q b
q
k and bk

k bq
q in (2.7) also do not contain derivatives

with respect to the spatial variables. There remain three terms:

1) the term with ∇kq g00 in (2.7);
2) the term with ∇k g00 ∇q g00 in (2.7);
3) the term with R in (2.7).

Let’s start with the term with ∇kq g00. This second covariant
derivative itself is written using the components of the metric
connection Γs

kq of the three-dimensional metric gij:

∇kq g00 =
∂2g00

∂xk ∂xq
−

3
∑

s=1

Γs
kq

∂g00

∂xs
. (11.5)
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Applying the variation of the metric gij from (8.14) to Γi
kq in

(8.3), we obtain the following expression:

Γ̂s
kq = Γs

kq +
ε

2

3
∑

r=1

gsr (∇k hrq + ∇q hkr −∇r hkq)+ . . . . (11.6)

In addition to the variation of the metric we must take into
account the variation of the scalar function g00 itself in (8.14).
This leads to the formula

∇̂kq ĝ00 = ∇kq g00 + ∇kq h00 −

− ε

2

3
∑

r=1

3
∑

s=1

gsr
(

∇k hrq + ∇q hkr − ∇r hkq

)

∇s g00 + . . . .
(11.7)

The formula (11.7) is derived using (11.6). Due to (11.7) the term
with the second covariant derivative (11.5) contributes to the left
hand side of the formula (11.4). Its contribution is expressed by
the following two integrals:

L1 = −
c4
gr ε

16 π γ

∫

Ω

g
−1/2
00

3
∑

k=1

3
∑

q=1

gkq ∇kq h00

√

det g d3x. (11.8)

L2 =
c4
gr ε

16 π γ

∫

Ω

g
−1/2
00

2

3
∑

k=1

3
∑

q=1

3
∑

r=1

3
∑

s=1

gsr gkq
(

∇k hrq+

+∇q hkr −∇r hkq

)

∇s g00

√

det g d3x,

(11.9)

Let’s proceed to the term with ∇k g00 ∇q g00 in (2.7). The
covariant derivatives in this term do not use the connection
components Γs

kq . Therefore the contribution of this term to the

left hand side of (11.4) is expressed by the integral

L3 =
c4
gr ε

16 π γ

∫

Ω

g
−3/2
00

3
∑

k=1
q=1

gkq ∇k g00 ∇q h00

√

det g d3x. (11.10)
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The term with scalar curvature R in (2.7) is the most difficult
to calculate. Applying the variation of the metric gij from (8.14)
to R, we obtain the formula (4.34) which uses the notations
(4.35) and (4.30). Due to (4.34) the contribution of the term
with scalar curvature R in (2.7) to the left hand side of formula
(8.2) is expressed by the integral

L4 =
c4
gr ε

16 π γ

∫

Ω

g
1/2
00

3
∑

k=1

∇kZk
√

det g d3x. (11.11)

Let’s return to the integral (11.9). This integral can be sim-
plified and can be written as the sum of two integrals:

L2 =
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

s=1

2∇k hsk ∇s

(

g
1/2
00

)
√

det g d3x−

−
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

s=1

3
∑

r=1

gsr ∇r hk
k ∇s

(

g
1/2
00

)
√

det g d3x.

(11.12)

Applying integration by parts to the integrals (11.12), we obtain
the following relationship:

L2 =
c4
gr ε

16 π γ

∫

∂ Ω

3
∑

k=1

3
∑

s=1

2 hsk ∇s

(

g
1/2
00

)

nk dS −

−
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

s=1

2 hsk ∇sk

(

g
1/2
00

)

√

det g d3x−

−
c4
gr ε

16 π γ

∫

∂ Ω

3
∑

k=1

3
∑

s=1

3
∑

r=1

gsr hk
k ∇s

(

g
1/2
00

)

nr dS +

+
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

s=1

3
∑

r=1

gsr hk
k ∇sr

(

g
1/2
00

)
√

det g d3x.

(11.13)
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Here in (11.13) we denote by dS the area element on the bound-
ary ∂ Ω of the three-dimensional domain Ω, while nk and nr are
the covariant components of the unit normal vector n to the
boundary ∂ Ω directed outward from the domain Ω.

Passing to the integral (11.8), we integrate it by parts twice.
As a result, we obtain

L1 = −
c4
gr ε

16 π γ

∫

∂ Ω

g
−1/2
00

3
∑

k=1

3
∑

q=1

gkq ∇q h00 nk dS +

+
c4
gr ε

16 π γ

∫

∂ Ω

3
∑

k=1

3
∑

q=1

gkq ∇k

(

g
−1/2
00

)

h00 nq dS −

−
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

q=1

gkq ∇kq

(

g
−1/2
00

)

h00

√

det g d3x.

(11.14)

In (11.14), as in (11.13), dS denotes the area element on the
boundary ∂ Ω, while nk and nq are the covariant components of
the unit normal vector n to the boundary ∂ Ω.

Now we proceed to the integral (11.10). Note that this integral
can be written as follows:

L3 = −
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

q=1

gkq ∇k

(

g
−1/2
00

)

·

· ∇q h00

√

det g d3x.

(11.15)

Integrating by parts in (11.15), we derive the formula

L3 = −
c4
gr ε

16 π γ

∫

∂ Ω

3
∑

k=1

3
∑

q=1

gkq ∇k

(

g
−1/2
00

)

h00 nq dS +

+
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

q=1

gkq ∇kq

(

g
−1/2
00

)

h00

√

det g d3x.

(11.16)

CopyRight c© Sharipov R.A., 2025.
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The next step is to transform the integral (11.11). Integrating it
by parts, we get the following formula:

L4 =
c4
gr ε

16 π γ

∫

∂ Ω

g
1/2
00

3
∑

k=1

Zk nk dS−

−
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

∇k

(

g
1/2
00

)

Zk
√

det g d3x.

(11.17)

Earlier from the formulas (4.35) and (4.30) we obtained the
expression (4.38) for Zk . Here we apply the formula (4.38) to the
second integral in (11.17). This yields

L4 =
c4
gr ε

16 π γ

∫

∂ Ω

g
1/2
00

3
∑

k=1

Zk nk dS −

−
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

q=1

∇k

(

g
1/2
00

)

∇q hkq
√

det g d3x +

+
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

q=1

3
∑

r=1

∇k

(

g
1/2
00

)

gkq ∇q hr
r

√

det g d3x.

Next we apply integration by parts to the second and third
integrals in the resulting formula. This gives

L4 =
c4
gr ε

16 π γ

(
∫

∂ Ω

g
1/2
00

3
∑

k=1

Zk nk dS −
∫

∂ Ω

3
∑

k=1
q=1

∇k

(

g
1/2
00

)

·

· hkq nq dS +

∫

Ω

3
∑

k=1

3
∑

q=1

∇kq

(

g
1/2
00

)

hkq
√

det g d3x

)

+
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+
c4
gr ε

16 π γ

∫

∂ Ω

3
∑

k=1

3
∑

q=1

3
∑

r=1

∇k

(

g
1/2
00

)

gkq hr
r nq dS −

−
c4
gr ε

16 π γ

∫

Ω

3
∑

k=1

3
∑

q=1

3
∑

r=1

∇kq

(

g
1/2
00

)

gkq hr
r

√

det g d3x.

(11.18)

As in the previous formulas, by dS in (11.18) we denote the area
element on the boundary ∂ Ω of the three-dimensional domain Ω,
while nk and nq are the covariant components of the unit normal
vector n to the boundary of the domain ∂ Ω directed outward
from the domain Ω.

Now let’s recall that the surface integral of the second kind in
(11.4) can be transformed into an integral of the first kind:

∫

∂ Ω

(

J 1
gr dx2 ∧ dx3 + J 2

gr dx3 ∧ dx1 +

+J 3
gr dx1 ∧ dx2

)
√

det g =

∫

∂ Ω

3
∑

k=1

J k nk dS.

(11.19)

Due to (11.19) we can put together all of the integrals over
the boundary of the domain ∂ Ω from (11.13), (11.14), (11.16),
and (11.18) and compare their sum with the right hand side of
(11.19). This gives the following formula:

c4
gr ε

16 π γ

∫

∂ Ω

3
∑

k=1

( 3
∑

s=1

2 hsk ∇s

(

g
1/2
00

)

−
3
∑

q=1

3
∑

s=1

gsk ·

· hq
q ∇s

(

g
1/2
00

)

−
3
∑

q=1

g
−1/2
00 gkq ∇q h00 +

3
∑

q=1

gkq ·

· ∇q

(

g
−1/2
00

)

h00 −
3
∑

q=1

gkq ∇q

(

g
−1/2
00

)

h00 + g
1/2
00 ·

(11.20)
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·Zk −
3
∑

q=1

∇q

(

g
1/2
00

)

hkq +
3
∑

q=1

3
∑

r=1

∇q

(

g
1/2
00

)

gkq ·

· hr
r

)

= ε

∫

∂ Ω

3
∑

k=1

J k
gr nk dS.

Applying the formula (4.38), from the formula (11.20) we deter-
mine the components of the vector Jgr:

J k
gr =

c4
gr

16 π γ

( 3
∑

i=1

g
1/2
00 ∇i hik −

3
∑

i=1

3
∑

q=1

g
1/2
00 gik ∇i hq

q +

+

3
∑

i=1

hik ∇i

(

g
1/2
00

)

−
3
∑

i=1

g
−1/2
00 gik ∇i h00

)

.

(11.21)

The final formula for J k
gr is obtained from (11.21) after applying

the formulas (9.17) and (9.18). It has the form

J k
gr =

c5
gr

16 π γ

( 3
∑

i=1

2 g
1/2
00 ∇i bik −

3
∑

i=1

3
∑

q=1

2 g
1/2
00 gik ·

· ∇i bq
q +

3
∑

i=1

2 bik ∇i

(

g
1/2
00

)

−
3
∑

i=1

g
−1/2
00 gik ∇i b00

)

.

(11.22)

In general, the energy flux of the gravitational field through a
surface S is given by the formula

E(S) =

∫

S

3
∑

k=1

J k
gr nk dS. (11.23)

The components J k
gr of the vector Jgr in (11.23) are determined

by the formula (11.22).
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Theorem 8.1 states the total energy conservation law including
the gravitational field energy and the energy of matter fields.
There is no separate conservation law for the gravitational field
energy. But in the formula for the total energy density (7.2)
we can separate the part (10.8) responsible for the gravitational
field. In the same way, from the vector of the total energy flux
J defined by the formula (9.19), which is continued in (9.20), we
can separate the part Jgr defined by the formula (11.22), which is
responsible for the energy flux of the gravitational field.

L. D. Faddeev in [61] points out some problems with the
definition of the energy for the gravitational field in Einstein’s
theory of relativity. In our new theory, as we can see in the
formulas (10.8) and (11.22), there are no problems with the
energy of the gravitational field.



CHAPTER IV

POINT PARTICLES

IN A GRAVITATIONAL FIELD.

§ 1. Action integral for point particles.

Point particles or point masses in mechanics are usually con-
sidered to be particles whose size is negligibly small compared
to the distances of their movements and whose internal structure
and spatial orientation do not affect their motion. The location
of a point particle in space is characterized by three coordinates
x1, x2, x3. The motion of a point particle is characterized by the
fact that its coordinates x1, x2, x3 depend on time:

x1(t), x2(t), x3(t). (1.1)

In our theory there are distinguished coordinate systems which
are called comoving coordinates, see § 3 in Chapter I. In what
follows by x1, x2, x3 in (1.1) and everywhere below we mean
coordinates in one of such comoving coordinate systems. In
addition, in our theory there is a distinguished way of measuring
time associated with the foliation of 3D-branes in spacetime. It
is called membrane time, see § 5 in Chapter I. By time t in (1.1)
and everywhere below we mean one of the possible choices of
such membrane time.

The time derivatives of the coordinates of a point particle in
(1.1) are components of a vector:

vi = ẋi =
dxi

dt
, where i = 1, 2, 3. (1.2)
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This vector v in (1.2) is called the particle velocity vector.
The acceleration vector a of a point particle is obtained from
the velocity vector v of this particle through the procedure of
covariant differentiation with respect to time:

ai = ∇tv
i = v̇i +

3
∑

j=1

3
∑

k=1

Γi
jk vi vk , where i = 1, 2, 3. (1.3)

Through Γi
jk in (1.3) we denote the components of the metric

connection for the three-dimensional metric gij , see (2.7) in
Chapter II. These quantities are defined by means of the formula
(4.1) from Chapter II.

The length of the velocity vector of a point particle v with the
components (1.2) is determined by the metric gij :

|v| =

√

√

√

√

3
∑

i=1

3
∑

j=1

gij vi vj . (1.4)

Now, given (1.4), we are ready to write the action integral
for point particles. When writing the action integral we shall
distinguish between baryonic light matter particles and non-
baryonic dark matter particles:

Sbr = −
∫

m c2
br

√

g00 −
|v|2
c2
br

dt, (1.5)

Snb = −
∫

m c2
nb

√

g00 −
|v|2
c2
nb

dt. (1.6)

The integrals (1.5) and (1.6) differ only in the constants cbr and
cnb in them. These are two of the four speed constants that we
considered in (1.2) in Chapter II. In what follows we shall restrict
our consideration to the case of non-baryonic matter (1.6). The
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formulas obtained in this way can be easily adapted to the case
of baryonic matter by simply replacing cnb with cbr in them.

The action integrals in (1.5) and (1.6) are essentially integrals
along the particle’s path, which are determined by the functions
x1(t), x2(t), x3(t) in (1.1). The quantity g00 in these formulas is
the scalar function from (2.9) in Chapter II, while the constant
m is the mass of the particle, which is also called the rest mass
of the particle.

§ 2. Motion of non-baryonic

particles in a gravitational field.

The function in the action integral for a point particle is called
the Lagrangian of this particle:

Snb =

∫

Lnb dt. (2.1)

Comparing (2.1) with (1.6), we obtain

Lnb = −m c2
nb

√

g00 −
|v|2
c2
nb

. (2.2)

Applying the principle of least action1 to the integral (2.1) leads
to the Euler-Lagrange equations

− d

dt

(δLnb

δvi

)

g,b,g
b,x

+
(δLnb

δxi

)

g,b,g
b,v

= 0. (2.3)

Since the Lagrangian (2.2) is not an integral but a function,
the partial variational derivatives are reduced to regular partial
derivatives, while the Euler-Lagrange equations themselves (2.3)
are written in the form

− d

dt

(∂Lnb

∂vi

)

+
∂Lnb

∂xi
= 0. (2.4)

1 The principle of least action would be more correctly called the principle

of stationary action, since minimal action is never actually required.

CopyRight c© Sharipov R.A., 2025.
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The partial derivatives in (2.4) are easily calculated with the use
of the formula (2.2). Indeed, we have

∂Lnb

∂vi
=

m vi
√

g00 −
|v|2
c2
nb

,

∂Lnb

∂xi
=

3
∑

r=1

3
∑

s=1

m

2

∂grs

∂xi
vr vs − c2

nb

m

2

∂g00

∂xi

√

g00 −
|v|2
c2
nb

.

(2.5)

The function g00 is a scalar function. Therefore its partial
derivative in (2.5) is equal to its covariant derivative:

∂g00

∂xi
= ∇i g00. (2.6)

It is known that the covariant derivative of a Riemannian metric
with respect to its own metric connection is zero: ∇i grs = 0. The
formula (4.1) in Chapter II is usually derived from this equality.
It is also known that the covariant derivative ∇i grs is calculated
by means of the following formula (see § 7 in Chapter III of [53]):

∇i grs =
∂grs

∂xi
−

3
∑

q=1

Γq
ir gqs −

3
∑

q=1

Γq
is grq. (2.7)

From ∇i grs = 0 and from the formula (2.7) we derive

3
∑

r=1

3
∑

s=1

∂grs

∂xi
vr vs =

3
∑

q=1

3
∑

s=1

2 Γq
is vq vs. (2.8)

Here Γq
is are the components of the metric connection defined

by the three-dimensional metric gij . Due to (2.6) and (2.8), the
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formulas (2.5) are written in the following way:

∂Lnb

∂vi
=

m vi
√

g00 −
|v|2
c2
nb

,

∂Lnb

∂xi
=

3
∑

q=1

3
∑

s=1

m Γq
is vq vs − m c2

nb

2
∇i g00

√

g00 −
|v|2
c2
nb

.

(2.9)

Applying (2.9) to the equations (2.4), we derive

d

dt

( m vi
√

g00 −
|v|2
c2
nb

)

=

=

3
∑

q=1

3
∑

s=1

m Γq
is vq vs − m c2

nb

2
∇i g00

√

g00 −
|v|2
c2
nb

.

(2.10)

The time derivative in the left hand side of the equation (2.10) is
transformed as follows:

d

dt

( m vi
√

g00 −
|v|2
c2
nb

)

=
m v̇i

√

g00 −
|v|2
c2
nb

+

+
m vi

(
√

g00 −
|v|2
c2
nb

)3

1

2

(

d

dt

( |v|2
c2
nb

)

− ġ00 −
3
∑

s=1

vs ∇s g00

)

.

(2.11)

By combining (2.10) and (2.11) we derive the differential equa-



94 CHAPTER IV. POINT PARTICLES IN . . .

tions for the components vi of the velocity vector v:

m v̇i
√

g00 −
|v|2
c2
nb

+
m vi

(

√

g00 −
|v|2
c2
nb

)3

1

2

(

d

dt

( |v|2
c2
nb

)

− ġ00 −

−
3
∑

s=1

vs ∇s g00

)

=

3
∑

q=1

3
∑

s=1

m Γq
is vq vs − m c2

nb

2
∇i g00

√

g00 −
|v|2
c2
nb

.

(2.12)

The equation (2.12) is derived using (2.6). In addition to (2.6)
we need the relationship (6.1) from Chapter III. The second term
in the left hand side of the equation (2.12) contains the time
derivative of |v|2. We calculate this derivative as follows:

d(|v|2)
dt

=
d

dt

( 3
∑

r=1

3
∑

s=1

grs vr vs

)

=

3
∑

r=1

3
∑

s=1

d(grs vr)

dt
vs +

+

3
∑

r=1

3
∑

s=1

d(grs vs)

dt
vr −

3
∑

r=1

3
∑

s=1

dgrs

dt
vs vr =

=

3
∑

s=1

2 v̇s vs −
3
∑

r=1

3
∑

s=1

∂grs

∂t
vs vr −

3
∑

r=1

3
∑

s=1

3
∑

i=1

∂grs

∂xi
ẋi vs vr.

(2.13)

We transform (2.13) using the formula (6.1) from Chapter III, as
well as the formulas (1.2) and (2.8). This gives

d(|v|2)
dt

= −
3
∑

q=1

3
∑

s=1

3
∑

i=1

2 Γq
is vq vs vi +

+
3
∑

s=1

2 v̇s vs −
3
∑

r=1

3
∑

s=1

2 cgr brs vs vr.

(2.14)
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Next we multiply (2.12) by vi and sum over i from 1 to 3:

m

3
∑

i=1

v̇i vi

√

g00 −
|v|2
c2
nb

+
m |v|2

(

√

g00 −
|v|2
c2
nb

)3
·

· 1

2

(

d

dt

( |v|2
c2
nb

)

− ġ00 −
3
∑

s=1

vs ∇s g00

)

=

=

3
∑

q=1

3
∑

s=1

3
∑

i=1

m Γq
is vq vs vi − m c2

nb

2

3
∑

i=1

vi ∇i g00

√

g00 −
|v|2
c2
nb

.

(2.15)

We then apply the formula (2.14) to the time derivative of |v|2
in the formula (2.15). As a result the equality (2.15) simplifies
and reduces to the following equality:

3
∑

i=1

v̇i vi =

3
∑

q=1

3
∑

s=1

3
∑

i=1

Γq
is vq vs vi +

cgr |v|2
g00 c2

nb

3
∑

r=1

3
∑

s=1

brs ·

· vs vr +
ġ00 |v|2
2 g00

− c2
nb

2

3
∑

i=1

vi ∇i g00 +
|v2|
g00

3
∑

i=1

vi ∇i g00.

(2.16)

Now we substitute (2.16) into the second term in the right hand
side of (2.14). As a result, we get

d(|v|2)
dt

= −2 cgr

g00

(

g00 −
|v|2
c2
nb

) 3
∑

r=1

3
∑

s=1

brs vs vr +

+
ġ00 |v|2

g00

− c2
nb

3
∑

i=1

vi ∇i g00 +
2 |v|2
g00

3
∑

i=1

vi ∇i g00.

(2.17)
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The next step is to substitute the formula (2.17) into the equation
(2.12). This yields the following equation:

v̇i −
3
∑

q=1

3
∑

s=1

Γq
is vq ẋs = −c2

nb

2
∇i g00 +

+ vi

( 3
∑

s=1

vs ∇s g00

g00

+
ġ00

2 g00

+
cgr

c2
nb g00

3
∑

r=1

3
∑

s=1

brs vs vr

)

.

(2.18)

The left hand side of equation (2.18) fits the definition of the
covariant derivative of a covector field with respect to parameter
t along a parametric curve, see (8.10) in § 8 of Chapter III in
[53]). Therefore we can write (2.18) as

∇tvi = −c2
nb

2
∇i g00 + vi

( 3
∑

s=1

vs ∇s g00

g00

+

+
ġ00

2 g00

+
cgr

c2
nb g00

3
∑

r=1

3
∑

s=1

brs vs vr

)

.

(2.19)

Note that the equalities (1.2) can be written as differential equa-
tions for the particle coordinates:

ẋi = vi. (2.20)

The equations (2.19) supplemented by the equations (2.20) form
a complete system of differential equations describing the motion
of a non-baryonic particle in a gravitational field defined by a
three-dimensional Riemannian metric gij and a scalar function
g00. The equations do not contain the particle mass m. This
circumstance is interpreted as the following theorem.

Theorem 2.1. The inertial and passive gravitational masses

of a non-baryonic massive particle are equal to each other.

The definitions of inertial, as well as active and passive gravi-
tational masses, are given in [62].
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§ 3. Energy and momentum of

non-baryonic point particles.

The Legendre transformation for a non-baryonic point particle
is determined by its Lagrangian:

pi =
(δLnb

δvi

)

g,b,g
b,x

, (3.1)

The Lagrangian (2.2) is not an integral, but a function. Therefore
the variational partial derivative in the formula (3.1) should be
replaced by a regular partial derivative:

pi =
∂Lnb

∂vi
(3.2)

The partial derivative from (3.2) was already calculated in (2.5).
Using the first formula from (2.5), we get

pi =
m vi

√

g00 −
|v|2
c2
nb

. (3.3)

The quantities pi in (3.3) are components of the covector p.
This covector with the components (3.3) is called the momentum
covector of a non-baryonic particle.

Let’s return to the equations (2.10). Using the components of
the momentum covector p from (3.3) and taking into account the
equations (1.2), we can write the equations (2.10) as follows:

ṗi −
3
∑

q=1

3
∑

s=1

Γq
is pq ẋs = − m c2

nb ∇i g00

2

√

g00 −
|v|2
c2
nb

. (3.4)

The left hand side of the equations (3.4) fits the definition of the
covariant derivative of a covector field with respect to parameter
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t along a parametric curve, see (8.10) in § 8 of Chapter III in
[53]). Therefore, we can write (3.4) as

∇tpi = − m c2
nb ∇i g00

2

√

g00 −
|v|2
c2
nb

. (3.5)

The equations (3.5) supplemented by the equations (2.20) consti-
tute a complete system of ordinary differential equations describ-
ing the motion of a non-baryonic particle in a gravitational field
defined by a three-dimensional metric gij and a scalar function
g00. The right hand sides of the equations (3.5) are interpreted
as components of the force covector F which acts upon a non-
baryonic particle from the gravitational field:

Fi = − m c2
nb ∇i g00

2

√

g00 −
|v|2
c2
nb

. (3.6)

The energy function for a non-baryonic particle is written in
terms of the components of its momentum covector p and in
terms of the components of its velocity vector v:

Enb =

3
∑

i=1

pi vi − Lnb. (3.7)

Applying (3.3) and (2.2) to (3.7), we obtain

Enb =
m |v|2

√

g00 −
|v|2
c2
nb

+ m c2
nb

√

g00 −
|v|2
c2
nb

. (3.8)

The formula (3.8) for the energy of a non-baryonic particle can be
simplified by reducing it to a common denominator and grouping
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similar terms in the numerator. After simplification the formula
(3.8) is written in the following way:

Enb =
m c2

nb
√

g00 −
|v|2
c2
nb

. (3.9)

The value of the function g00 can be made equal to one at any
single point in space, but in general not everywhere. In order to
do this it is necessary to change the membrane time according to
the formula (2.10) from Chapter II. After this the formula (3.9)
takes the following form:

Enb =
m c2

nb
√

1− |v|2
c2
nb

. (3.10)

Due to (3.10) the constant cnb is interpreted as the upper bound
for the speed of a non-baryonic particle.

§ 4. Circular rotation of non-baryonic

particles around a Schwarzschild black hole.

In § 8 of Chapter II above we studied Schwarzschild black holes
in the framework of our new theory of gravity. For this purpose
we used the spacial coordinates

x1 = ρ, x2 = θ, x3 = φ (4.1)

and the time variable t associated with a comoving observer
placed at infinity from the black hole. The gravitational field
of a Schwarzschild black hole is given by the scalar field g00

and the three-dimensional diagonal metric gij which are defined
by the formulas (8.7) and (8.6) from Chapter II. The nonzero
components of the three-dimensional metric connection are given
by the formulas (8.8) from Chapter II.
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The function g00 and the three-dimensional metric gij in the
case of a Schwarzschild black hole are stationary. They do not
depend on time. Therefore we have the following relationships:

ġ00 = 0, bij = 0 for 1 6 i, j 6 3. (4.2)

Let a non-baryonic particle of mass m rotate around a black
hole in its equatorial plane with angular velocity ω. Then its
rotation in the coordinates (4.1) is given by the formulas

ρ(t) = ρ = const, θ(t) =
π

2
= const, φ(t) = ω t. (4.3)

Differentiating (4.3) with respect to time, we find the components
of the velocity vector of a non-baryonic particle:

v1 = 0, v2 = 0, v3 = ω. (4.4)

The components of the velocity covector are derived from (4.4)
using the standard index lowering procedure:

vi =

3
∑

k=1

gik vk. (4.5)

Applying the formulas (8.6) from Chapter II and the formula
(4.4) to (4.5) and taking into account (4.3), we obtain

v1 = 0, v2 = 0, v3 = ρ2 ω. (4.6)

The components of the acceleration covector are defined as

ai = ∇tvi = v̇i −
3
∑

q=1

3
∑

s=1

Γq
is vq vs. (4.7)
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Applying (4.4) and (4.6) to (4.7) and taking into account the
formulas (8.8) from Chapter II, we find

a1 = −ρ ω2, a2 = 0, a3 = 0. (4.8)

Now we can apply the differential equations (2.19) describing
the particle dynamics. First we calculate the components of the
gradient for the scalar field g00 in them:

∇1 g00 =
rgr

ρ2
∇2 g00 = 0, ∇3 g00 = 0. (4.9)

Using (4.4) and (4.9), we derive

3
∑

s=1

vs ∇s g00 = 0. (4.10)

Due to (4.2), (4.10), and (4.7) the equation (2.19) reduces to

ai = −c2
nb

2
∇i g00. (4.11)

Applying (4.8) and (4.9) to (4.11), we obtain the equality

−ρ ω2 = −c2
nb rgr

2 ρ2
. (4.12)

The gravitational radius for a baryonic Schwarzschild black hole
of mass M is given by the formula

rgr =
2 γ M

c2
gr

. (4.13)

The formula (4.13) is contained in § 100 of Chapter XII in [2] and
in [63]. Substituting (4.13) into (4.12), we derive

ρ ω2 =
c2
nb γ M

c2
gr ρ2

. (4.14)
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Despite the presence of a denominator in the formula for the
force (3.6), the formula (4.14) coincides with the corresponding
formula from the classical Newtonian theory of gravity up to the
constant scalar factor

knb =
c2
nb

c2
gr

. (4.15)

If we replace the non-baryonic particle with a baryonic one,
then cnb in (4.15) will be replaced by cbr. The corresponding
factor kbr in this case must be equal to one, since for baryonic
matter in the classical Newtonian theory of gravity there is no
speed of light and its analogues:

kbr =
c2
br

c2
gr

= 1. (4.16)

From (4.16) follows the equality

cbr = cgr, (4.17)

while the above reasoning serves as a proof of the obtained
equality (4.17).

§ 5. Superbradyons of Luis Gonzalez-Mestres.

Massive non-baryonic particles with the limiting speed differ-
ent from the speed of light were considered by Luis Gonzalez-
Mestres in [64]. He believed that

cnb > cel. (5.1)

Due to the inequality (5.1), Luis Gonzalez-Mestres in [65] called
the particles he invented superbradyons. In [66] and [67] he wrote
a formula for the energy of superbradyons of the form (3.10) and
suggested that superbradyons could be found in cosmic rays.
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44. Möbius strip, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.

45. Einstein field equations, Wikipedia, Wikimedia Foundation Inc., San
Francisco, USA.

46. Cosmological constant, Wikipedia, Wikimedia Foundation Inc., San Fran-
cisco, USA.

47. Gravitational constant, Wikipedia, Wikimedia Foundation Inc., San Fran-

cisco, USA.

CopyRight c© Sharipov R.A., 2025.

https://vixra.org/abs/2403.0041
https://en.wikipedia.org/wiki/History_of_the_metre
https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Hyperfine_structure
https://en.wikipedia.org/wiki/Dark_matter
https://en.wikipedia.org/wiki/Galaxy_rotation_curve
https://en.wikipedia.org/wiki/Gravitational_lens
https://en.wikipedia.org/wiki/Mobius_strip
https://en.wikipedia.org/wiki/Einstein_field_equations
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Gravitational_constant


106 REFERENCES.

48. Newton’s law of universal gravitation, Wikipedia, Wikimedia Foundation
Inc., San Francisco, USA.

49. Christoffel symbols, Wikipedia, Wikimedia Foundation Inc., San Fran-
cisco, USA.

50. Riemann curvature tensor, Wikipedia, Wikimedia Foundation Inc., San
Francisco, USA.

51. Ricci curvature, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.
52. Scalar curvature, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.

53. Sharipov R. A., Course of differential geometry, Bashkir State University,
Ufa, 1996; see also arXiv:math/0412421.

54. Jacobi’s formula, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.

55. Action principles, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.
56. Support (mathematics), Wikipedia, Wikimedia Foundation Inc., San

Francisco, USA.
57. Generalized coordinates, Wikipedia, Wikimedia Foundation Inc., San

Francisco, USA.
58. Legendre transformation, Wikipedia, Wikimedia Foundation Inc., San

Francisco, USA.
59. Divergence theorem, Wikipedia, Wikimedia Foundation Inc., San Fran-

cisco, USA.
60. Hubble’s law, Wikipedia, Wikimedia Fnd. Inc., San Francisco, USA.
61. Faddeev L. D., The energy problem in Einstein’s theory of gravitation,

Uspekhi Fizicheskikh Nauk 136 (1982), no. 3, 435–457; see also, Physics-
Uspekhi 25 (1982), no. 3, 130–142.

62. Mass, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.
63. Schwarzschild metric, Wikipedia, Wikimedia Foundation Inc., San Fran-

cisco, USA.
64. Gonzalez-Mestres L., Properties of a possible class of particles able to

travel faster than light, e-print arXiv:astro-ph/9505117.
65. Gonzalez-Mestres L., Space, time and superluminal particles, e-print ar-

Xiv:physics/9702026.
66. Gonzalez-Mestres L., Observing air showers from cosmic superluminal

particles, e-print arXiv:physics/9712049.

67. Gonzalez-Mestres L., Physics opportunities above the Greisen-Zatsepin-
Kuzmin cutoff: Lorentz symmetry violation at the Planck scale, e-print

arXiv:physics/9712047.

https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation
https://en.wikipedia.org/wiki/Christoffel_symbols
https://en.wikipedia.org/wiki/Riemann_curvature_tensor
https://en.wikipedia.org/wiki/Ricci_curvature
https://en.wikipedia.org/wiki/Scalar_curvature
http://arxiv.org/abs/math/0412421
https://en.wikipedia.org/wiki/Jacobi's_formula
https://en.wikipedia.org/wiki/Action_principles
https://en.wikipedia.org/wiki/Support_(mathematics)
https://en.wikipedia.org/wiki/Generalized_coordinates
https://en.wikipedia.org/wiki/Legendre_transformation
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Hubble's_law
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Schwarzschild_metric
https://arxiv.org/abs/astro-ph/9505117
https://arxiv.org/abs/physics/9702026
https://arxiv.org/abs/physics/9702026
https://arxiv.org/abs/physics/9712049
https://arxiv.org/abs/physics/9712047


CONTACTS.

Address:

Ruslan Sharipov,
Institute of Informatics,
Mathematics, and Robotics
of Ufa University
of Science and Technology,
Zaki Validi str. 32,
450076 Ufa, Russia

Phone:

+7(347)-273-67-18 (office)
+7(917)-476-93-48 (mobile)

E-mail:

r-sharipov@mail.ru
SharipovRA@uust.ru

URL:

https://ruslan-sharipov.ucoz.com
https://freetextbooks.narod.ru

https://ruslan-sharipov.ucoz.com
https://freetextbooks.narod.ru/


APPENDIX.

List of the author’s publications

for the period from 1986 to 2025.

Part 1. Theory of solitons.

1. Sharipov R. A., Finite-zone analogues of N-multiplet solutions of the
KdV equation, Russian Mathematical Surveys 41 (1986), no. 5, 165–166;

DOI: 10.1070/RM1986v041n05ABEH003447; see also UMN 41 (1986),
no. 5, 203–204.

2. Sharipov R. A., Soliton multiplets of the Kortweg-de Vries equation, Dok-
lady Akademii Nauk SSSR 292 (1987), no. 6, 1356–1359.

3. Sharipov R. A., Multiplet solutions of the Kadomtsev-Petviashvili equa-

tion against a finite-zone background, Russian Mathematical Surveys 42
(1987), no. 5, 177–178; DOI: 10.1070/RM1987v042n05ABEH001481; see

also UMN 42 (1987), no. 5, 221–222.

4. Bikbaev R. F., Sharipov R. A., Magnetization waves in the Landau-Lif-
shitz model, Physics Letters A 134 (1988), no. 2, 105–107; DOI: 10.10

16/0375-9601(88)90943-7 see also arXiv: solv-int/9905008.

5. Bikbaev R. F., Sharipov R. A., Asymptotics at t → ∞ of the solution to
the Cauchy problem for the Korteweg-de Vries equation in the class of

potentials with finite-gap behavior as x → ±∞, Theoretical and Math-
ematical Physics 78 (1989), no. 3, 244–252; DOI: 10.1007/BF01017661;

see also TMF 78 (1989), no. 3, 345–356.

6. Sharipov R. A., Integration of Bogoyavlenskii chains, Mathematical No-
tes 47 (1990), no. 1, 101–103; DOI: 10.1007/BF01157292; see also Mat.
zametki 47 (1990), no. 1, 157–160.

7. Cherdantsev I. Yu., Sharipov R. A., Finite-gap solutions of the Bullough-

Dodd-Zhiber-Shabat equation, Theoretical and Mathematical Physics 82
(1990), no. 1, 108–111; DOI: 10.1007/BF01028259; see also TMF 82

(1990), no. 1, 155–160.

https://www.mathnet.ru/eng/rm2258
https://www.mathnet.ru/eng/rm2258
https://www.mathnet.ru/eng/dan8249
https://www.mathnet.ru/eng/rm2634
https://www.mathnet.ru/eng/rm2634
https://www.sciencedirect.com/science/article/abs/pii/0375960188909437
https://www.sciencedirect.com/science/article/abs/pii/0375960188909437
https://arxiv.org/abs/solv-int/9905008
https://www.mathnet.ru/eng/tmf4790
https://www.mathnet.ru/eng/tmf4790
https://www.mathnet.ru/eng/tmf4790
https://www.mathnet.ru/eng/mzm3149
https://www.mathnet.ru/eng/tmf5403
https://www.mathnet.ru/eng/tmf5403


LIST OF PUBLICATIONS. 109

8. Cherdantsev I. Yu., Sharipov R. A., Solitons on a finite-gap background
in Bullough-Dodd-Jiber-Shabat model, International Journal of Modern

Physics A 5 (1990), no. 15, 3021–3027; DOI: 10.1142/S0217751X90001
410; see also arXiv:math-ph/0112045.

9. Sharipov R. A., Yamilov R. I., Bäcklund transformations and the con-
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