
BOUNDARY CONDITIONS

IN LAGRANGIAN FIELD THEORIES.

Ruslan Sharipov

Abstract. Deriving field equations in Lagrangian field theories is based on the sta-
tionary action principle. Typically this principle is applied to smooth and continuous

configurations of fields. Assuming that the stationary action principle remains valid
for discontinuous configurations of fields, we derive boundary value conditions for

fields in Lagrangian field theories.

1. Introduction.

Most of the Lagrangian field theories nowadays are four-dimensional relativis-
tic theories describing the universe in terms of the four-dimensional spacetime. A
different paradigm is suggested in the 3D-brane universe model. The 3D-brane
universe model is the name of a new non-Einsteinian theory of gravity where the
spacetime is treated as just a mathematical abstraction that records various mo-
ments in the evolution of the real three-dimensional universe (see the book [1] or
its English translation [2], see also the papers [3–16] and the conference report ab-
stracts [17–30] given in chronological order). The main goal of the present paper is
to prepare a background for studying matter fields within the new theory. For this
reason here we consider three-dimensional field theories with the time evolution
and borrow some notations from [1] and [2].

2. Comoving coordinates and membrane time.

Let M be our universe. According to the paradigm from [1] and [2] it is a
three-dimensional Riemannian manifold with the time dependent metric

gij = gij(t, x
1, x2, x3). (2.1)

At each moment of time t we have some definite special embedding

ft : M −→ M4 (2.2)

of the real physical universe M into the four-dimensional pseudo-Riemannian man-
ifold M4 which is called the spacetime. According to the paradigm from [1] and [2]
the spacetime M4 in (2.2) is not a physical entity, but a mathematical abstraction
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only. Despite this, we keep the concept of spacetime as a bridge connecting the
new theory with Einstein’s general relativity.

The images ft(M ) of M in the spacetime M4 are 3D-branes. They are three-
dimensional space-like submanifolds of M4. These branes do not intersect with
each other and constitute a foliation of 3D-branes in the spacetime. This foliation
of 3D-branes is the fourth geometric structure arising in the new theory and being
complementary to the first three structures known in Einstein’s general relativity1:

1) a pseudo-Riemannian metric G with the signature (+,−.−,−);
2) an orientation;
3) a polarization;
4) a foliation of spacelike 3D-branes filling the spacetime entirely with the excep-

tion of perhaps one point corresponding to the Big Bang.

The variables x1, x2, x3 in (2.1) are some dedicated local coordinates in M ,
which are called comoving coordinates (see § 3 of Chapter I in [2]). The mappings
(2.2) associate these coordinates with the spacial comoving coordinates x1, x2, x3

in the spacetime M4 (see definitions and more details in § 3 of Chapter I in [2]).

Definition 4.1. Observers whose comoving coordinates do not change over time
are called comoving observers.

Comoving observers are considered to be in the state of absolute rest (see § 4
of Chapter I in [2]). Comoving coordinates in M4 are dedicated coordinates. The
variable t in (2.2) is also associated with a dedicated time variable in M4. It is
called the membrane time. Using it, one can introduce the fourth coordinate x0 in
M4 complementary to the spacial comoving coordinates x1, x2, x3:

x0 = cgr t. (2.3)

The constant cgr in (2.3) is interpreted as the speed of gravity or (more exactly) the
speed of gravitational waves (see details in § 1 of Chapter II in [2]).

In comoving spacial coordinates x1, x2, x3 complemented with the temporal co-
ordinate x0 from (2.3) the pseudo-Riemannian metric G of the spacetime M4 is
given by the following block-diagonal matrix:

Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

g00 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (2.4)

see § 2 of Chapter II in [2]. The components of the lower right diagonal block of the
matrix are determined by the components of the three-dimensional metric (2.1).
The component g00 in (2.4) in the new theory is interpreted as a scalar function:

g00 = g00(t, x
1, x2, x3). (2.5)

The functions (2.1) and (2.5) are dynamic variables describing the gravitational
field in the new theory, see § 2 of Chapter II in [2].

1 See more details in § 2 of Chapter I in [2] and in § 3 of Chapter III in [31].
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3. Action integrals and Lagrangians.

Action integrals in field theories are usually written as time integrals of La-
grangians, while Lagrangians are spacial integrals of Lagrangian densities:

S =

∫

L dt, L =

∫

L
√

det g d3x. (3.1)

The Lagrangian L in (3.1) depends on the function (2.5) and on its time derivative

ġ00(t, x
1, x2, x3) =

∂g00

∂t
. (3.2)

Along with g00 and ġ00, the Lagrangian L in (3.1) depends on the functions (2.1)
and on their time derivatives. Following § 4 from Chapter II in [2], we replace the
time derivatives of the functions (2.1) by the functions

bij(t, x
1, x2, x3) =

1

2

∂gij

∂x0
=

1

2 cgr

∂gij

∂t
=

ġij

2 cgr

. (3.3)

The functions (2.1), (3.3), (2.5), and (3.2) correspond to the gravitational field.
Apart from the gravitational field, the theory includes matter. Like in § 3 from
Chapter III in [2], we do not specify any particular sort of matter. In general form
we assume that matter is described by some functions

Qi = Qi(t, x
1, x2, x3), 1 6 i 6 n, (3.4)

and their time derivatives

Q̇i(t, x
1, x2, x3) =

∂Qi

∂t
, 1 6 i 6 n. (3.5)

Therefore in symbolic form the total set of functional arguments of the Lagrangian
L is presented by the following formula:

L = L(g, ġ,g,b,Q, Q̇). (3.6)

The arguments g and ġ in (3.6) correspond to the functions (2.5) and (3.2), the
arguments g and b correspond to the functions (2.1) and (3.3), and the arguments

Q and Q̇ correspond to the functions (3.4) and (3.5). For the Lagrangian density
L the equality (3.6) means that L depends not only on the values of the functions
(2.5), (3.2), (2.1), (3.3), (3.4), and (3.5), but also on the values of some finite
number of their partial derivatives of various orders with respect to x1, x2, x3.

4. Matter boundaries and interfaces.

Some sorts of matter in the universe may have clear and sharp boundaries,
e. g. rock to vacuum interface of asteroids or ice to water interface of icebergs. In
order to describe such interfaces we consider a two-dimensional surface σ in the
three-dimensional real physical universe M . This surface can move, e. g. because of
the translational and rotational motion of an asteroid or because of melting of an
iceberg in a hot sea. Let’s denote through u = u(P ) the velocity vector of a point
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P ∈ σ. The surface σ divides the three-dimensional universe M into two parts M+

and M− as shown in Fig. 4.1.
Through n = n(P ) we denote the unit

normal vector to the surface σ at a point
P ∈ σ. The choice of this vector fixes
one of the two possible orientations on the
surface σ. Taking into account this orien-
tation, we can write

σ = ∂M−,

σ = − ∂M+.
(4.1)

Previously, developing the new theory
in [3–16] we considered smooth Lagran-
gian densities L in (3.1) and smooth con-
figurations of the fields (2.1), (2.5), (3.4)
and their time derivatives (3.2), (3.3), and
(3.5). Here in the presence of matter in-
terfaces we proceed to discontinuous La-

grangian densities L in (3.1). We define them as follows:

L =

{ L− if P ∈ M−,

L+ if P ∈ M+.
(4.2)

The lists of arguments of both functions L− and L+ in (4.2) are assumed to be
the same, see (3.6) and the text below this formula. Through P in (4.2) we denote
a point of the real three-dimensional universe M whose comoving coordinates are
x1, x2, x3. Since the surface σ is a moving surface, the domains M− and M+ in
(4.2) depend on the time variable t used in the arguments of the functions (2.1),
(2.5), (3.4), (3.2), (3.3), and (3.5), which is the global time in M associated with
the membrane time in M4.

5. Stationary action principle

and variations of the action integral.

The stationary action principle (see [32]) states that the variation of an action
integral with respect to each dynamical variable should be zero. In our case the
action integral S is given by the formulas (3.1). Let’s choose the function g00 from
(2.5) as the first dynamical variable. In the case of a smooth Lagrangian density L
the stationary action principle applied to S with respect to the dynamical variable
g00 yields the following differential equation:

− ∂

∂t

( δL
δġ00

)

g,g,b

Q,Q̇

− cgr

( δL
δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

( δL
δg00

)

ġ,g,b

Q,Q̇

= 0, (5.1)

see § 3 of Chapter III in [2]. The equation (5.1) remains valid for the Lagrangian
density (4.2) within the bulk of the domains M− and M+, i. e. we have

− ∂

∂t

(δL−

δġ00

)

g,g,b

Q,Q̇

− cgr

(δL−

δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

(δL−

δg00

)

ġ,g,b

Q,Q̇

= 0 for P ∈ M− (5.2)
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and we have a similar equation

− ∂

∂t

(δL+

δġ00

)

g,g,b

Q,Q̇

−cgr

(δL+

δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

(δL+

δg00

)

ġ,g,b

Q,Q̇

= 0 for P ∈ M+. (5.3)

Our goal below is to apply the stationary action principle to the action integral
S in (3.1) with respect to the dynamic variable g00 at a point P ∈ σ, where
σ = ∂M− = − ∂M+ (see (4.1) and Fig. 4.1). For this purpose we consider the
following small variation of the function g00:

ĝ00 = g00(t, x
1, x2, x3) + ε h00(t, x

1, x2, x3). (5.4)

Here ε → 0 is a small parameter, while h(t, x1, x2, x3) is an arbitrary smooth
function with compact support (see [33]). Differentiating (5.4) with respect to the
time variable t, we get the following equality:

˙̂g00 = ġ00(t, x
1, x2, x3) + ε ḣ00(t, x

1, x2, x3). (5.5)

Due to (4.2) the Lagrangian L in (3.1) is transformed to the sum of two integrals:

L =

∫

M−

L−
√

det g d3x +

∫

M+

L+
√

det g d3x. (5.6)

Now, like in § 9 of Chapter III in [2], we introduce the following notations:

g00[i1 . . . is] =
∂g00

∂xi1 . . . ∂xis
, h00[i1 . . . is] =

∂h00

∂xi1 . . .∂xis
, (5.7)

ġ00[i1 . . . is] =
∂ġ00

∂xi1 . . . ∂xis
, ḣ00[i1 . . . is] =

∂ḣ00

∂xi1 . . .∂xis
. (5.8)

Each higher order partial derivative of the functions g00, h00, ġ00, ḣ00 with respect
to spacial coordinates x1, x2, x3 can be expressed in the form of (5.7) and (5.8). In
order to exclude duplicates we implicitly assume that

1 6 i1 6 i2 6 . . . 6 is 6 3. (5.9)

Substituting (5.4) and (5.5) for g00 and ġ00 into the integrals (5.6) and expanding
them with respect to the small parameter ε → 0, we get

L̂ = L + ε L1 + . . . . (5.10)

By ellipsis in (5.10) we denote higher order terms with respect to the small param-
eter ε → 0. The first order term L1 in (5.10) is subdivided into two parts

L1 = L−
1 + L+

1 . (5.11)

Each derivative g00[i1 . . . is] of the from (5.7) makes its own contributions to L−

1

and to L+
1 . Let’s denote these contributions through I−g [i1 . . . is] and I+

g [i1 . . . is].
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In explicit form these contributions are given by the following integrals:

I−g [i1 . . . is] =

∫

M−

( ∂L−

∂g00[i1 . . . is]

√

det g
)

h00[i1 . . . is] d
3x,

I+
g [i1 . . . is] =

∫

M+

( ∂L+

∂g00[i1 . . . is]

√

det g
)

h00[i1 . . . is] d
3x.

(5.12)

Each derivative ġ00[i1 . . . is] of the from (5.8) also makes its own contributions to
L−

1 and to L+
1 in (5.11). We denote these contributions through I−ġ [i1 . . . is] and

I+
ġ [i1 . . . is]. In explicit form these contributions are given by the integrals

I−ġ [i1 . . . is] =

∫

M−

( ∂L−

∂ġ00[i1 . . . is]

√

det g
)

ḣ00[i1 . . . is] d
3x,

I+
ġ [i1 . . . is] =

∫

M+

( ∂L+

∂ġ00[i1 . . . is]

√

det g
)

ḣ00[i1 . . . is] d
3x.

(5.13)

Like in § 9 of Chapter III in [2], here we denote through ιq a linear mapping acting
upon differential 3-forms and generating differential 2-forms so that

ιq(dx1 ∧ dx2 ∧ dx3) =











dx2 ∧ dx3 if q = 1,

dx3 ∧ dx1 if q = 2,

dx1 ∧ dx2 if q = 3.

(5.14)

Applying (5.14) and acting as in deriving the formula (9.7) in § 9 of Chapter III in
[2], we derive the following formula for the first integral in (5.12):

I−g [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r−1 ∂r−1

∂xis−r+2 . . . ∂xis

( ∂L−

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

∫

M−

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L−

∂g00[i1 . . . is]

√

det g
)

h00 d3x.

(5.15)

The second integral (5.12) is transformed similarly:

I+
g [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r ∂r−1

∂xis−r+2 . . .∂xis

( ∂L+

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

∫

M+

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L+

∂g00[i1 . . . is]

√

det g
)

h00 d3x.

(5.16)
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Slight difference in signs in the formulas (5.15) and (5.16) is due to the difference
in signs in two formulas (4.1).

Now we proceed to the formulas (5.13). They are similar to (5.12). The first
integral in (5.13) is transformed in the following way:

I−ġ [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r−1 ∂r−1

∂xis−r+2 . . .∂xis

( ∂L−

∂ġ00[i1 . . . is]
·

·
√

det g
)

ḣ00[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

∫

M−

(−1)s ∂s

∂xi1 . . . ∂xis

( ∂L−

∂ġ00[i1 . . . is]

√

det g
)

ḣ00 d3x.

(5.17)

The second integral (5.13) is transformed similarly:

I+
ġ [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r ∂r−1

∂xis−r+2 . . .∂xis

( ∂L+

∂ġ00[i1 . . . is]
·

·
√

det g
)

ḣ00[i1 . . . is−r] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) +

+

∫

M+

(−1)s ∂s

∂xi1 . . .∂xis

( ∂L+

∂ġ00[i1 . . . is]

√

det g
)

ḣ00 d3x.

(5.18)

Slight difference in signs in the formulas (5.17) and (5.18) is also due to the diffe-
rence in signs in two formulas (4.1).

The last terms in the formulas (5.15) and (5.16) are related to the bulk of the
domains M− and M+. They contribute to the variational derivatives

(δL−

δg00

)

ġ,g,b

Q,Q̇

,
(δL+

δg00

)

ġ,g,b

Q,Q̇

. (5.19)

The total contribution of all these terms (including those with s = 0) to the first
order term L1 in the expansion (5.11) is given by the formula

I±g =

∫

M−

(δL−

δg00

)

ġ,g,b

Q,Q̇

h00

√

det g d3x +

∫

M+

(δL+

δg00

)

ġ,g,b

Q,Q̇

h00

√

det g d3x (5.20)

containing the derivatives (5.19). The last terms in the formulas (5.17) and (5.18)
are also related to the bulk of the domains M− and M+. They contribute to the
following two variational derivatives:

(δL−

δġ00

)

g,g,b

Q,Q̇

,
(δL+

δġ00

)

g,g,b

Q,Q̇

. (5.21)

In this case we can also find the total contribution of all such terms (including those
with s = 0) to the first order term L1 in the expansion (5.11). This contribution is
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given by a formula similar to the formula (5.20):

I±ġ =

∫

M−

(δL−

δġ00

)

g,g,b

Q,Q̇

ḣ00

√

det g d3x +

∫

M+

(δL+

δġ00

)

g,g,b

Q,Q̇

ḣ00

√

det g d3x (5.22)

containing the above derivatives (5.21).
Note that the integrals (5.22) are parts of the first order term L1 in the expansion

(5.11), while L1 determines the first order term

S1 =

∫

L1 dt. (5.23)

in the expansion of the action integral

Ŝ = S + ε S1 + . . . . (5.24)

The relationships (5.23) and (5.24) follow from (3.1). Due to (5.23) both integrals
(5.22) are subject to subsequent integration over time, i. e. we have

S±

ġ =

∫ ∫

M−

(δL−

δġ00

)

g,g,b

Q,Q̇

ḣ00

√

det g d3x dt +

+

∫ ∫

M+

(δL+

δġ00

)

g,g,b

Q,Q̇

ḣ00

√

det g d3x dt.

(5.25)

Integrating by parts in two integrals (5.25), we derive

S±

ġ =

∫ ∫

σ

(u,n)

(

(δL−

δġ00

)

g,g,b

Q,Q̇

−
(δL+

δġ00

)

g,g,b

Q,Q̇

)

h00 dS dt−

−
∫ ∫

M−

∂

∂t

(

(δL−

δġ00

)

g,g,b

Q,Q̇

√

det g

)

h00 d3x dt−

−
∫ ∫

M+

∂

∂t

(

(δL+

δġ00

)

g,g,b

Q,Q̇

√

det g

)

h00 d3x dt.

(5.26)

Here through (u,n) we denote the scalar product of the surface velocity vector u

and its unit normal vector, see Fig. 4.1. Through dS in (5.26) we denote the area
element of the surface σ.

Due to (5.23) the integrals (5.20) are also subject to integration over time:

I±g =

∫ ∫

M−

(δL−

δg00

)

ġ,g,b

Q,Q̇

√

det g h00 d3x dt +

+

∫ ∫

M+

(δL+

δg00

)

ġ,g,b

Q,Q̇

√

det g h00 d3x dt.

(5.27)

The last two terms in (5.26) and the integrals (5.27) are related to the bulk of the
domains M− and M+. Applying the stationary action principle to them leads to
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the equations (5.2) and (5.3). Therefore we omit last two terms in (5.26), replacing
them by ellipsis, and, returning back to the formula (5.22), we write

I±ġ =

∫

σ

(u,n)

(

(δL−

δġ00

)

g,g,b

Q,Q̇

−
(δL+

δġ00

)

g,g,b

Q,Q̇

)

h00 dS + . . . . (5.28)

Similarly, we omit the last terms in (5.15), (5.16), (5.17), and (5.18), replacing them
by ellipses, since they are already taken into account in the variational derivatives
(5.19) and (5.21) and in the differential equations (5.2) and (5.3). Their boundary
effect is expressed by the formula (5.28). So, we have

I−g [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r−1 ∂r−1

∂xis−r+2 . . .∂xis

( ∂L−

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) + . . . ,

(5.29)

I+
g [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r ∂r−1

∂xis−r+2 . . .∂xis

( ∂L+

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) + . . . ,

(5.30)

I−ġ [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r−1 ∂r−1

∂xis−r+2 . . .∂xis

( ∂L−

∂ġ00[i1 . . . is]
·

·
√

det g
)

ḣ00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) + . . . ,

(5.31)

I+
ġ [i1 . . . is] =

s
∑

r=1

∫

σ

(−1)r ∂r−1

∂xis−r+2 . . .∂xis

( ∂L+

∂ġ00[i1 . . . is]
·

·
√

det g
)

ḣ00[i1 . . . is−r ] ιis−r+1
(dx1 ∧ dx2 ∧ dx3) + . . . .

(5.32)

Due to (5.10) and (5.11) the expressions (5.28), (5.29), (5.30), (5.31), and (5.32)

constitute the first order term L1 in the expansion of the Lagrangian L̂:

L1 =

N
∑

s=1

3
∑

...

3
∑

i1 ... is

(

I−g [i1 . . . is] + I+
g [i1 . . . is] +

+ I−ġ [i1 . . . is] + I+
ġ [i1 . . . is]

)

+ I±ġ .

(5.33)

Here N is a finite integer number being an upper bound for the orders of spacial
derivatives of the function g00 included in the Lagrangian density L. In order to
avoid duplicates the summation indices in (5.33) should obey the inequalities (5.9).
Note also that the partial differential operators of the form

∂r−1

∂xis−r+2 . . .∂xis
(5.34)

in the terms with r = 1 in (5.29), (5.30), (5.31), and (5.32) should be ignored.
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According to (3.1), the expansion (5.10) of the Lagrangian L̂ produces the ex-

pansion (5.24) of the action integral Ŝ. The first order term S1 in (5.24) is given
by the integral (5.23). Substituting (5.33) into (5.23), we get

S1 =

N
∑

s=1

3
∑

...

3
∑

i1 ... is

(
∫

I−g [i1 . . . is] dt +

∫

I+
g [i1 . . . is] dt +

+

∫

I−ġ [i1 . . . is] dt +

∫

I+
ġ [i1 . . . is] dt

)

+

∫

I±ġ dt.

(5.35)

Let’s perform some transformations with the integrands in (5.35). We replace
summation over r in (5.29), (5.30), (5.31), and (5.32) with summation over s − r.
As a result the formula (5.33) is written as

L1 =

N
∑

s=1

s−1
∑

r=0

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ − L−)

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . ir ] ιir+1
(dx1 ∧ dx2 ∧ dx3) +

+
N

∑

s=1

s−1
∑

r=0

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ −L−)

∂ġ00[i1 . . . is]
·

·
√

det g
)

ḣ00[i1 . . . ir ] ιir+1
(dx1 ∧ dx2 ∧ dx3) + I±ġ + . . . .

(5.36)

Then we swap sums over s and over r in (5.36). This yields

L1 =

N−1
∑

r=0

N
∑

s=r+1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . . ∂xis

( ∂(L+ −L−)

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . ir ] ιir+1
(dx1 ∧ dx2 ∧ dx3) +

+

N−1
∑

r=0

N
∑

s=r+1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ − L−)

∂ġ00[i1 . . . is]
·

·
√

det g
)

ḣ00[i1 . . . ir ] ιir+1
(dx1 ∧ dx2 ∧ dx3) + I±ġ + . . . .

(5.37)

Again let’s recall that L1 is the first order term in the expansion (5.10) and that
it should be integrated over time in (5.23). When integrating over time the second
term of (5.37) we can apply integration by parts:

∫ ∫

σ

∂ s−r−1

∂xir+2 . . . ∂xis

( ∂(L+ − L−)

∂ġ00[i1 . . . is]

√

det g
)

ḣ00[i1 . . . ir] ιir+1
(dx1 ∧ dx2 ∧

∧ dx3) dt = −
∫ ∫

σ

∂

∂t

∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ − L−)

∂ġ00[i1 . . . is]

√

det g
)

h00[i1 . . . ir ] ·

· ιir+1
(dx1 ∧ dx2 ∧ dx3) dt−

∫ ∫

σ

∂ s−r

∂xir+1 . . .∂xis

( ∂(L+ − L−)

∂ġ00[i1 . . . is]

√

det g
)

·
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· (u,n) h00[i1 . . . ir]
dS dt√
det g

−
∫ ∫

σ

∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ − L−)

∂ġ00[i1 . . . is]

√

det g
)

·

· (u,n) h00[i1 . . . ir+1]
dS dt√
det g

Like in (5.26) and (5.28), through (u,n) in the above formula we denote the scalar
product of the surface velocity vector u and its unit normal vector, see Fig. 4.1.
Through dS in this formula we denote the area element of the surface σ. Applying
this formula back to the formula (5.37), we get

L1 =

N−1
∑

r=0

N
∑

s=r+1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ −L−)

∂g00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . ir] ιir+1
(dx1 ∧ dx2 ∧ dx3)−

−
N−1
∑

r=0

N
∑

s=r+1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂

∂t

∂ s−r−1

∂xir+2 . . . ∂xis

( ∂(L+ −L−)

∂ġ00[i1 . . . is]
·

·
√

det g
)

h00[i1 . . . ir] ιir+1
(dx1 ∧ dx2 ∧ dx3)−

−
N−1
∑

r=0

N
∑

s=r+1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r

∂xir+1 . . .∂xis

( ∂(L+ −L−)

∂ġ00[i1 . . . is]
·

·
√

det g
)

(u,n) h00[i1 . . . ir ]
dS√
det g

+

+

N
∑

r=1

N
∑

s=r

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r

∂xir+1 . . . ∂xis

( ∂(L+ −L−)

∂ġ00[i1 . . . is]
·

·
√

det g
)

(u,n) h00[i1 . . . ir ]
dS√
det g

+

+

∫

σ

(u,n)

(

(δL−

δġ00

)

g,g,b

Q,Q̇

−
(δL+

δġ00

)

g,g,b

Q,Q̇

)

h00 dS + . . . .

(5.38)

Like in the case of (5.34), the partial differential operators of the form

∂ s−r−1

∂xir+2 . . .∂xis

∂ s−r

∂xir+1 . . . ∂xis
(5.39)

should be ignored in those terms of the formula (5.38) where s = r + 1 and s = r

respectively. Note that some terms in the third and the fours groups of summands
in (5.38) do cancel each other. However not all of them are canceled and taking
the cancellations into account will not make the formula much simpler.

Note that in (5.38) we see a mixture of the integrals of the first and the second
kind over the surface σ. We can bring all of them to integrals of the second kind
using the following formula:

∫

σ

(u,n) A dS =

3
∑

k=1

∫

σ

√

det g (u,n) A nk ιk(dx1 ∧ dx2 ∧ dx3). (5.40)
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The formula (5.40) is a special case of the more general formula

3
∑

k=1

∫

σ

√

det g J k ιk(dx1 ∧ dx2 ∧ dx3) =

∫

σ

(J,n) dS. (5.41)

Using the above formulas (5.38), (5.40), and (5.41), now we define a series of vector
fields Jg[i1 . . . ir] such that the formula

L1 =

N
∑

r=0

3
∑

...

3
∑

i1 ... ir

Jg[i1 . . . ir ]
k h00[i1 . . . ir ] ιk(dx1 ∧ dx2 ∧ dx3) + . . . . (5.42)

coincides with the formula (5.38) for any smooth function with compact support
h00(t, x

1, x2, x3) in (5.4). Here in (5.42) k is an upper index like in the formulas
(5.40) and (5.41). The indices i1, . . . , ir in (5.38) are subordinate to the indices
i1, . . . , is. They obey the inequalities

1 6 i1 6 i2 6 . . . 6 ir 6 3. (5.43)

produced from (5.9). The indices i1, . . . , ir in (5.42) also obey the inequalities
(5.43). Due to the formula (5.40) the components Jg[i1 . . . ir ]

k of the vector fields
Jg [i1 . . . ir ] are uniquely determined from (5.38).

Note that the vector fields Jg[i1 . . . ir ] are defined not globally in the universe
M , but only at the points of the surface σ, though they are not inner vector fields
of this surface.

The stationary action principle means that the first order term in the Lagrangian
expansion (5.10) with respect to the variation (5.4) of the dynamic variable g00 given
by the (5.42) should be identically zero. This leads to the boundary conditions

3
∑

k=1

Jg[i1 . . . ir]
k nk

P∈σ

= 0. (5.44)

Theorem 5.1. If the stationary action principle is valid for discontinuous La-

grangian densities of the form (4.2), then field configurations of corresponding La-

grangian field theories obey the boundary conditions (5.44) on the interface boundary

σ = ∂M− = −∂M+.

6. Boundary conditions associated

with the three-dimensional metric.

The boundary conditions (5.44) are associated with the scalar function (2.5)
and its variation (5.4). In the case of the three-dimensional metric (2.1) its small
variation is written in the following form:

ĝij = gij(t, x
1, x2, x3) + ε hij(t, x

1, x2, x3). (6.1)

Here ε → 0 is a small parameter, while hij(t, x
1, x2, x3) are arbitrary smooth func-

tions with compact support (see [33]). Differentiating the equality (6.1) with respect
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to t and taking into account the formula (3.3), we get the following equality:

b̂ij = bij(t, x
1, x2, x3) +

ε

2 cgr

ḣij(t, x
1, x2, x3). (6.2)

The formula (5.6) remains unchanged, while the formulas (5.7) and (5.8) are re-
placed with the following formulas:

gij[i1 . . . is] =
∂gij

∂xi1 . . . ∂xis
, hij[i1 . . . is] =

∂hij

∂xi1 . . .∂xis
, (6.3)

bij[i1 . . . is] =
∂bij

∂xi1 . . . ∂xis
, ḣij[i1 . . . is] =

∂ḣij

∂xi1 . . .∂xis
. (6.4)

The variations (6.1) and (6.2) lead to the variations

L̂ = L + ε L1 + . . . , Ŝ = S + ε S1 + . . . (6.5)

similar to (5.10) and (5.24). By ellipses in (6.5) we denote higher order terms with
respect to the small parameter ε → 0. Due to (4.2) and (5.6) the first order term
L1 in (6.5) is subdivided into two parts

L1 = L−

1 + L+
1 . (6.6)

Each derivative gij[i1 . . . is] of the from (6.3) and each derivative bij[i1 . . . is] of the

form (6.4) makes its own contributions to L−

1 and to L+
1 in (6.6). Let’s denote these

contributions through I−gij
[i1 . . . is], I+

gij
[i1 . . . is], I−bij

[i1 . . . is], and I+
bij

[i1 . . . is]. In

explicit form these contributions are given by the following integrals:

I−gij
[i1 . . . is] =

∫

M−

( ∂L−

∂gij[i1 . . . is]

√

det g
)

hij[i1 . . . is] d
3x,

I+
gij

[i1 . . . is] =

∫

M+

( ∂L+

∂gij[i1 . . . is]

√

det g
)

hij[i1 . . . is] d
3x,

(6.7)

I−bij
[i1 . . . is] =

∫

M−

( ∂L−

∂bij[i1 . . . is]

√

det g
) ḣij [i1 . . . is]

2 cgr

d3x,

I+
bij

[i1 . . . is] =

∫

M+

( ∂L+

∂bij[i1 . . . is]

√

det g
) ḣij[i1 . . . is]

2 cgr

d3x.

(6.8)

Acting just like as in the previous section and using the formulas (6.7) and (6.8),
we derive the following formula for the first order term L1 in the expansion (6.5):

L1 =

N−1
∑

r=0

N
∑

s=r+1

3
∑

i6j

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . .∂xis

( ∂(L+ − L−)

∂gij[i1 . . . is]
·

·
√

det g
)

hij[i1 . . . ir ] ιir+1
(dx1 ∧ dx2 ∧ dx3)−
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−
N−1
∑

r=0

N
∑

s=r+1

3
∑

i6j

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂

∂t

∂ s−r−1

∂xir+2 . . .∂xis

(∂(L+ − L−)

∂bij[i1 . . . is]
·

·
√

det g
) hij [i1 . . . ir ]

2 cgr

ιir+1
(dx1 ∧ dx2 ∧ dx3)−

−
N−1
∑

r=0

N
∑

s=r+1

3
∑

i6j

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r

∂xir+1 . . .∂xis

(∂(L+ −L−)

∂bij[i1 . . . is]
·

·
√

det g
)

(u,n)
hij[i1 . . . ir]

2 cgr

dS√
det g

+

+

N
∑

r=1

N
∑

s=r

3
∑

i6j

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r

∂xir+1 . . . ∂xis

(∂(L+ − L−)

∂bij [i1 . . . is]
·

·
√

det g
)

(u,n)
hij[i1 . . . ir ]

2 cgr

dS√
det g

+

+

3
∑

i6j

∫

σ

(u,n)

(

(δL−

δġ00

)

g,ġ,g

Q,Q̇

−
(δL+

δġ00

)

g,ġ,g

Q,Q̇

)

hij

2 cgr

dS + . . . .

The above formula1 is an analog of the formula (5.38). Like in (5.38), the partial
differential operators of the form (5.39) should be ignored in those terms of it where
s = r + 1 and s = r respectively. The indices i1, . . . , ir in the above formula, like
in (5.38), are subordinate to the indices i1, . . . , is. They obey the inequalities
(5.43) produced from (5.9). Using the above formula, we define a series of three-
dimensional vector fields Jgij

[i1 . . . ir ] such that

L1 =
N

∑

r=0

3
∑

i6j

3
∑

...

3
∑

i1 ... ir

Jgij
[i1 . . . ir ]

k hij[i1 . . . ir ] ιk(dx1 ∧ dx2 ∧ dx3) + . . . . (6.9)

The indices i1, . . . , ir in (6.9) also obey the inequalities (5.43). Due to the formula
(5.40) the components Jgij

[i1 . . . ir ]
k of the vector fields Jgij

[i1 . . . ir ] are uniquely
determined by the formula (6.9) and by the formula preceding (6.9). Using these
components, we write the boundary conditions

3
∑

k=1

Jgij
[i1 . . . ir ]

k nk

P∈σ

= 0 (6.10)

and then we formulate the following theorem.

Theorem 6.1. If the stationary action principle is valid for discontinuous La-

grangian densities of the form (4.2), then field configurations of corresponding La-

grangian field theories obey the boundary conditions (6.10) on the interface boundary

σ = ∂M− = −∂M+.

1 Note that for s = 0 in (6.7) we should separately take into account the dependence of detg

on gij . However the contribution of the arising extra terms goes to ellipses in (6.9) and in the

formula preceding the formula (6.9).



BOUNDARY CONDITIONS IN LAGRANGIAN FIELD THEORIES 15

7. Boundary conditions associated with matter.

The matter fields in the present paper are given by the functions (3.4) and their
time derivatives (3.5). Small variations of the functions (3.4) are written as

Q̂i = Qi(t, x
1, x2, x3) + ε hi(t, x

1, x2, x3). (7.1)

Here ε → 0 is a small parameter, while hi(t, x
1, x2, x3) are arbitrary smooth func-

tions with compact support (see [33]). Differentiating (7.1) with respect to the time
variable t, we get the following equality:

˙̂
Qi = Q̇i(t, x

1, x2, x3) + ε ḣi(t, x
1, x2, x3). (7.2)

Like in the previous section, in this case the formula (5.6) remains unchanged, while
the formulas (5.7) and (5.8) in this case are replaced with the formulas

Qi[i1 . . . is] =
∂g00

∂xi1 . . .∂xis
, hi[i1 . . . is] =

∂hi

∂xi1 . . .∂xis
, (7.3)

Q̇i[i1 . . . is] =
∂ġ00

∂xi1 . . .∂xis
, ḣi[i1 . . . is] =

∂ḣi

∂xi1 . . .∂xis
. (7.4)

The variations (7.1) and (7.2) lead to the variations

L̂ = L + ε L1 + . . . , Ŝ = S + ε S1 + . . . (7.5)

similar to (5.10), (5.24) and (6.5). By ellipses in (7.5) we denote higher order terms
with respect to the small parameter ε → 0. Due to (4.2) and (5.6) the first order
term L1 in (7.5) is subdivided into two parts

L1 = L−

1 + L+
1 . (7.6)

Each derivative Qi[i1 . . . is] of the from (7.3) and each derivative Q̇i[i1 . . . is] of the
form (7.4) makes its own contributions to L−

1 and to L+
1 in (7.6). Let’s denote these

contributions through I−Qi
[i1 . . . is], I+

Qi
[i1 . . . is], I−

Q̇i

[i1 . . . is], and I+

Q̇i

[i1 . . . is]. In

explicit form these contributions are given by the following integrals:

I−Qi
[i1 . . . is] =

∫

M−

( ∂L−

∂Qi[i1 . . . is]

√

det g
)

hi[i1 . . . is] d
3x,

I+
Qi

[i1 . . . is] =

∫

M+

( ∂L+

∂Qi[i1 . . . is]

√

det g
)

hi[i1 . . . is] d
3x,

(7.7)

I−
Q̇i

[i1 . . . is] =

∫

M−

( ∂L−

∂Q̇i[i1 . . . is]

√

det g
)

ḣi[i1 . . . is] d
3x,

I+

Q̇i

[i1 . . . is] =

∫

M+

( ∂L+

∂Q̇i[i1 . . . is]

√

det g
)

ḣi[i1 . . . is] d
3x.

(7.8)
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Acting just like as in two previous sections and using the formulas (7.7) and (7.8),
we derive the following formula for the first order term L1 in the expansion (7.5):

L1 =

N−1
∑

r=0

N
∑

s=r+1

n
∑

i=1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r−1

∂xir+2 . . . ∂xis

( ∂(L+ −L−)

∂Qi[i1 . . . is]
·

·
√

det g
)

hi[i1 . . . ir] ιir+1
(dx1 ∧ dx2 ∧ dx3)−

−
N−1
∑

r=0

N
∑

s=r+1

n
∑

i=1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂

∂t

∂ s−r−1

∂xir+2 . . . ∂xis

(∂(L+ −L−)

∂Q̇i[i1 . . . is]
·

·
√

det g
)

hi[i1 . . . ir] ιir+1
(dx1 ∧ dx2 ∧ dx3)−

−
N−1
∑

r=0

N
∑

s=r+1

n
∑

i=1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r

∂xir+1 . . . ∂xis

(∂(L+ −L−)

∂Q̇i[i1 . . . is]
·

·
√

det g
)

(u,n) hi[i1 . . . ir ]
dS√
det g

+

+

N
∑

r=1

N
∑

s=r

n
∑

i=1

3
∑

...

3
∑

i1 ... is

∫

σ

(−1)s−r ∂ s−r

∂xir+1 . . .∂xis

(∂(L+ − L−)

∂Q̇i[i1 . . . is]
·

·
√

det g
)

(u,n) hi[i1 . . . ir ]
dS√
det g

+

+
n

∑

i=1

∫

σ

(u,n)

(

(δL−

δQ̇i

)

g,ġ,g
b,Q

−
(δL+

δQ̇i

)

g,ġ,g
b,Q

)

hi dS + . . . .

The above formula is an analog of the formula (5.38). Like in (5.38), the partial
differential operators of the form (5.39) should be ignored in those terms of it where
s = r + 1 and s = r respectively. The indices i1, . . . , ir in the above formula, like
in (5.38), are subordinate to the indices i1, . . . , is. They obey the inequalities
(5.43) produced from (5.9). Using the above formula, we define a series of three-
dimensional vector fields JQi

[i1 . . . ir] such that

L1 =

N
∑

r=0

n
∑

i=1

3
∑

...

3
∑

i1 ... ir

JQi
[i1 . . . ir]

k hi[i1 . . . ir] ιk(dx1 ∧ dx2 ∧ dx3) + . . . . (7.9)

Like in section 5, the vector fields JQi
[i1 . . . ir ] here are defined not globally in

the universe M , but only at the points of the surface σ, though they are not inner
vector fields of this surface.

The indices i1, . . . , ir in (7.9) obey the inequalities (5.43). Due to the formula
(5.40) the components JQi

[i1 . . . ir]
k of the vector fields JQi

[i1 . . . ir] are uniquely
determined by the formula (7.9) and by the formula preceding (7.9). Using these
components, we write the boundary conditions

3
∑

k=1

JQi
[i1 . . . ir]

k nk

P∈σ

= 0 (7.10)

and then we formulate the following theorem.
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Theorem 7.1. If the stationary action principle is valid for discontinuous La-

grangian densities of the form (4.2), then field configurations of corresponding La-

grangian field theories obey the boundary conditions (7.10) on the interface boundary

σ = ∂M− = −∂M+.

8. Concluding remarks.

Theorems 5.1, 6.1, and 7.1 constitute the main result of the present paper.
These theorems contain the condition «if the stationary action principle is valid for
discontinuous Lagrangian densities» in their statements. In support of this «if»
one can mention the papers [34–36] on Lagrangian field theories with boundaries.

9. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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