List of publications

Scientific papers

1. Sharipov R. A., Finite-gap analogs of N-multiplet solutions of KdV equation, Uspehi Mat. Nauk, 41(1986), No. 5, 203-204.
2. Sharipov R. A., Soliton multiplets of Korteweg-de Vries equation, Dokladi AN SSSR, 292(1987), No. 6, 1356-1359.
3. Sharipov R. A., Multiplet solutions of Kadomtsev-Petviashvili equation on a finite-gap background, Uspehi Mat. Nauk, 42(1987), No. 5, 221-222.

4. Bikbaev R. F. & Sharipov R. A., Magnetization waves in Landau-Lifshits model, Physics Letters A, 134(1988), No. 2, 105-108.
5. Bikbaev R. F. & Sharipov R. A., Assymptotics as t → ∞ for the solution of Cauchy problem for the Korteweg-de Vries equation in the class of potentials with finite-gap behaviour as x → ± ∞, TMF, 78(1989), No. 3, 345-356.

6. Sharipov R. A., On the integration of Bogoyavlensky chains, Mat. zametki, 47(1990), No. 1, 157-160.

7. Cherdantsev I. Yu. & Sharipov R. A., Finite-gap solutions of Bullough-Dodd-Jiber-Shabat equation, TMF, 82(1990), No. 1, 155-160.
8. Cherdantsev I. Yu. & Sharipov R. A., Solitons on a finite-gap background in Bullough-Dodd-Jiber-Shabat model, International. Journ. of Modern Physics A, 5(1990), No. 5, 3021-3027.

9. Sharipov R. A. & Yamilov R. I., Backlund transformations and the construction of the integrable boundary value problem for the equation uxt=eu-e-2u, in book "Some problems of mathematical physics and asymptotics of its solutions", Institute of mathematics BNC UrO AN SSSR, 1991, 66-77.
10. Sharipov R. A., Minimal tori in five-dimensional sphere in $C^3$, TMF, 87(1991), No. 1, 48-56.
11. Safin S. S. & Sharipov R. A., Backlund autotransformation for the equation uxt=eu-e-2u, TMF, 95(1993), No. 1, 146-159.
12. Boldin A. Yu. & Safin S. S. & Sharipov R. A., On an old paper of Tzitzeika and the inverse scattering method, Journal of Mathematical Physics, 34(1993), No. 12, 5801-5809.

13. Boldin A. Yu. & Sharipov R. A., Dynamical systems, accepting the normal shift, TMF, 97(1993), No. 3, 386-395, see also Preprint #0001-M of Bashkir State University.
14. Boldin A. Yu. & Sharipov R. A., Dynamical systems, accepting the normal shift, Dokladi RAN, 334(1994), No. 2, 165-167.
15. Boldin A. Yu. & Sharipov R. A., Multidimensional dynamical systems, accepting the normal shift, TMF, 100(1994), No. 2, 264-269.
16. Sharipov R. A., Problem of metrizability for the dynamical systems, accepting the normal shift, TMF, 101(1994), No. 1, 85-93.
17. Sharipov R. A., Dynamical systems, accepting the normal shift, Uspehi Mat. Nauk, 49(1994), No. 4, 105.
18. Boldin A. Yu. & Dmitrieva V. V. & Safin S. S. & Sharipov R. A., Dynamical systems accepting the normal shift on an arbitrary Riemannian manifold, in book: "Dynamical systems accepting the normal shift", Bashkir State University, 1994, 4-19; see also TMF, 103(1995), No. 2, 256-266.
19. Boldin A. Yu. & Bronnikov A. A. & Dmitrieva V. V. & Sharipov R. A., Complete normality conditions for the dynamical systems on Riemannian manifolds, in book: "Dynamical systems accepting the normal shift", Bashkir State University, 1994, 20-30; see also TMF, 103(1995), No. 2, 267-275.
20. Sharipov R. A., Higher dynamical systems accepting the normal shift, in book: "Dynamical systems accepting the normal shift", Bashkir State University, 1994, 41-65.

21. Pavlov M. V. & Svinolupov S. I. & Sharipov R. A. Invariant criterion of integrability for the system of equations of hydrodynamical type, in book: "Integrability in dynamical systems", Inst. of Math. UrO RAN, Ufa, 1994, 27-48; see also Funk. Anal. i Pril., 30(1996), No. 1, 18-29.

22. Bronnikov A. A. & Sharipov R. A., Axially symmetric dynamical systems accepting the normal shift in $R^n$, in book: "Integrability in dynamical systems", Inst. of Math. UrO RAN, Ufa, 1994, 62-69.
23. Sharipov R. A., Metrizability by means of conformally equivalent metric for the dynamical systems, in book: "Integrability in dynamical systems", Inst. of Math. UrO RAN, Ufa, 1994, 80-90; see also TMF, 103(1995), No. 2, 276-282.

24. Sharipov R. A. & Sukhov A. B., On CR-mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions, Trans. of American Math. Society, 348(1996), No. 2, 767-780; see also Dokladi RAN, 350(1996), No. 4, 453-454.
25. Sharipov R. A. & Tsyganov E. N., On the separate algebraicity along the families of algebraic curves, Preprint of Baskir State University, Ufa, 1996, 1-7; see also Mat. Zametki, 68(2000), No. 2, 294-302.

26. Ferapontov E. V. & Sharipov R. A., On conservation laws of first order for the system of equations of hydrodynamical type, TMF, 108(1996), No. 1, 109-128.

27. Boldin A. Yu. & Sharipov R. A., On the solution of normality equations for the dimension n ≥ 3. Electronic archive http://arXiv.org, 1996, solv-int/9610006, 1-17; see also Algebra i Analiz, 10(1998), No. 4, 31-61.

28. Dmitrieva V. V. & Sharipov R. A., On the point transformations for the second order differential equations, Electronic archive http://arXiv.org, 1997, solv-int/9703003, 1-14.
29. Sharipov R. A., On the point transformations for the equation $y''=P+ 3Qy'+3Ry'^2+Sy'^3$, Electronic archive http://arXiv.org, 1997, solv-int/9706003, 1-35; see also Vestnik BashGU, 1998, No. 1(I), 5-8.
30. Mikhailov O. N. & Sharipov R. A., On the point expansion for certain class of differential equations of second order, Electronic archive http://arXiv.org, 1997, solv-int/9712001, 1-8; Diff. Uravneniya, 36(2000), No. 10, 1331-1335.
31. Sharipov R. A., Effective procedure of point-classification for the equation $y'' = P + 3Qy' + 3Ry'^2 + Sy'^3$, Electronic archive http://arXiv.org, 1998, math.DG/9802027, 1-35.

32. Dmitrieva V. V. & Gladkov A. V. & Sharipov R. A., On some equations that can be brought to the equations of diffusion type. Electronic archive http://arXiv.org, 1999, math.DG/9904080, 1-13; see also TMF, 123(2000), No. 1, 26-37.
33. Dmitrieva V. V. & Neufeld E. G. & Sharipov R. A. & Tsaregorodtsev A. A., On a point symmetry analysis for generalized diffusion type equations. Electronic archive at LANL, 1999, math.AP/9907130, 1-52.

34. Sharipov R. A., Dynamical systems admitting the normal shift, Thesis for the degree of Doctor of Sciences in Russia, Electronic archive http://arXiv.org, 2000, math.DG/0002202, 1-219.

35. Sharipov R. A., Newtonian normal shift in multidimensional Riemannian geometry, Electronic archive http://arXiv.org, 2000, math.DG/0006125,1-38; see also Mat. Sbornik, 192(2001), No. 6, 105-144.
36. Sharipov R. A., Newtonian dynamical systems admitting normal blow-up of points, Electronic archive http://arXiv.org, 2000, math.DG/0008081, 1-16; see also Zap. semin. POMI, 280(2001), 278-298.

37. Sharipov R. A., Orthogonal matrices with rational components in composing tests for High School students, Electronic archive http://arXiv.org, 2000, math.GM/0006230, 1-10.
38. Sharipov R. A., On rational extension of Heisenberg algebra, Electronic archive http://arXiv.org, 2000, math.RA/0009194, 1-12.

39. Sharipov R. A., On the solutions of weak normality equations in multidimensional case, Electronic archive http://arXiv.org, 2000, math.DG/0012110, 1-16.
40. Sharipov R. A., First problem of globalization in the theory of dynamical systems admitting the normal shift of hypersurfaces, Electronic archive at LANL, 2001, math.DG/0101150, 1-14; see also Global geometric structures associated with dynamical systems admitting normal shift of hypersurfaces in Riemannian manifolds, International Journal of Mathematics and Mathematical Sciences, 30(2002) No. 9, 541-557.
41. Sharipov R. A., Second problem of globalization in the theory of dynamical systems admitting the normal shift of hypersurfaces, Electronic archive http://arXiv.org, 2001, math.DG/0102141, 1-21.
42. Sharipov R. A., A note on Newtonian, Lagrangian, and Hamiltonian dynamical systems in Riemannian manifolds, Electronic archive http://arXiv.org, 2001, math.DG/0107212, 1-21.
43. Sharipov R. A., Dynamical systems admitting normal shift and wave equations, Electronic archive http://arXiv.org, 2001, math.DG/0108158, 1-16; see also TMF, 131(2002), No. 2, 244-260.
44. Sharipov R. A., Normal shift in general Lagrangian dynamics, Electronic archive http://arXiv.org, 2001, math.DG/0112089, 1-27.

45. Sharipov R. A., Algorithm for generating orthogonal matrices with rational elements, Electronic archive http://arXiv.org, 2002, cs.MS/0201007, 1-7.

46. Sharipov R. A., Comparative analysis for pair of dynamical systems, one of which is Lagrangian, Electronic archive http://arXiv.org, 2002, math.DG/0204161, 1-40.
47. Sharipov R. A., On the concept of normal shift in non-metric geometry, Electronic archive http://arXiv.org, 2002, math.DG/0208029, 1-47.
48. Sharipov R. A., V-representation for normality equations in geometry of generalized Legendre transformation, Electronic archive http://arXiv.org, 2002, math.DG/0210216, 1-32.
49. Sharipov R. A., On the subset of normality equations describing generalized Legendre transformation, Electronic archive http://arXiv.org, 2002, math.DG/0212059,1-19.

50. Lyuksyutov S. F. & Sharipov R. A., Note on kinematics, dynamics, and thermodynamics of plastic glassy media, Electronic archive http://arXiv.org, 2003, cond-mat/0304190, 1-19.
51. Lyuksyutov S. F. & Sharipov R. A. & Sigalov G. & Paramonov P. B., Exact analytical solution for electrostatic field produced by biased atomic force microscope tip dwelling above dielectric-conductor bilayer, Electronic archive http://arXiv.org, 2004, cond-mat/0408247, 1-6.
52. Lyuksyutov S. F. & Sharipov R. A., Separation of plastic deformations in polymers based on elements of general nonlinear theory, Electronic archive http://arXiv.org, 2004, cond-mat/0408433, 1-4.
53. Comer J. & Sharipov R. A., A note on the kinematics of dislocations in crystals, Electronic archive http://arXiv.org, 2004, math-ph/0410006, 1-15.
54. Sharipov R. A., Gauge or not gauge? Electronic archive http://arXiv.org, 2004, cond-mat/0410552, 1-12.
55. Sharipov R. A., Burgers space versus real space in the nonlinear theory of dislocations, Electronic archive http://arXiv.org, 2004, cond-mat/0411148, 1-10.
56. Comer J. & Sharipov R. A., On the geometry of a dislocated medium, Electronic archive http://arXiv.org, 2005, math-ph/0502007, 1-17.

57. Sharipov R. A., Tensor functions of tensors and the concept of extended tensor fields, Electronic archive http://arXiv.org, 2005, math.DG/0503332, 1-43.

58. Sharipov R. A., A note on the dynamics and thermodynamics of dislocated crystals, Electronic archive http://arXiv.org, 2005, cond-mat/0504180, 1-18.

59. Sharipov R. A., Spinor functions of spinors and the concept of extended spinor fields, Electronic archive http://arXiv.org, 2005, math.DG/0511350, 1-56.
60. Sharipov R. A., Commutation relationships and curvature spin-tensors for extended spinor connections, Electronic archive http://arXiv.org, 2005, math.DG/0512396, 1-22.
61. Sharipov R. A., A note on Dirac spinors in a non-flat space-time of general relativity, Electronic archive http://arXiv.org, 2006, math.DG/0601262, 1-22.
62. Sharipov R. A., A note on metric connections for chiral and Dirac spinors, Electronic archive http://arXiv.org, 2006, math.DG/0602359, 1-40.
63. Sharipov R. A., On the Dirac equation in a gravitation field and the secondary quantization, Electronic archive http://arXiv.org, 2006, math.DG/0603367, 1-10.
64. Sharipov R. A., The electro-weak and color bundles for the Standard Model in a gravitation field, Electronic archive http://arXiv.org, 2006, math.DG/0603611, 1-8.
65.Sharipov R. A., A note on connections of the Standard Model in a gravitation field, Electronic archive http://arXiv.org, 2006, math.DG/0604145, 1-11.
66.Sharipov R. A., A note on the Standard Model in a gravitation field, Electronic archive http://arXiv.org, 2006, math.DG/0605709, 1-36.

67. Lyuksyutov S. F. & Paramonov P. B. & Sharipov R. A. & Sigalov G., Induced nanoscale deformations in polymers using atomic force microscopy, Phys. Rev. B 70, 174110 (2004); see also cond-mat/0408247 (paper 51 above in this list)

68. Sharipov R. A., The Higgs field can be expressed through the lepton and quark fields, Electronic archive http://arXiv.org, 2007, hep-ph/0703001, 1-4.

69. Sharipov R. A., Algorithms for laying points optimally on a plane and a circle, Electronic archive http://arXiv.org, 2007, 0705.0350 [cs.CG], 1-6.

70. Sharipov R. A., Comparison of two formulas for metric connections in the bundle of Dirac spinors, Electronic archive http://arXiv.org, 2007, 0707.0482 [math.DG], 1-16.
71. Sharipov R. A., On the spinor structure of the homogeneous and isotropic universe in closed model, Electronic archive http://arXiv.org, 2007, 0708.1171 [math.DG], 1-25.
72. Sharipov R. A., On Killing vector fields of a homogeneous and isotropic universe in closed model, Electronic archive http://arXiv.org, 2007, 0708.2508 [math.DG], 1-19.
73. Sharipov R. A., On deformations of metrics and their associated spinor structures, Electronic archive http://arXiv.org, 2007, 0709.1460 [math.DG], 1-22.

74. Sharipov R. A., A note on pairs of metrics in a two-dimensional linear vector space, Electronic archive http://arXiv.org, 2007, 0710.3949 [math.MG], 1-9.
75. Sharipov R. A., A note on pairs of metrics in a three-dimensional linear vector space, Electronic archive http://arXiv.org, 2007, 0711.0555 [math.MG], 1-17.

76. Sharipov R. A., A cubic identity for the Infeld-van der Waerden field and its application, Electronic archive http://arXiv.org, 2008, 0801.0008 [math.DG], 1-18.
77. Sharipov R. A., A note on Kosmann-Lie derivatives of Weyl spinors, Electronic archive http://arXiv.org, 2008, 0801.0622 [math.DG], 1-22.
78. Sharipov R. A., On operator fields in the bundle of Dirac spinors, Electronic archive http://arXiv.org, 2008, 0802.1491 [math.DG], 1-14.

79. Sharipov R. A., Transfinite normal and composition series of groups, Electronic archive http://arXiv.org, 2009, 0908.2257 [math.GR], 1-12.
80. Sharipov R. A., Transfinite normal and composition series of modules, Electronic archive http://arXiv.org, 2009, 0909.2068 [math.RT], 1-7.

81. Sharipov R. A., A note on Khabibullin's conjecture for integral inequalities, Electronic archive http://arXiv.org, 2010, 1008.0376 [math.CA], 1-17.
82. Sharipov R. A., Direct and inverse conversion formulas associated with Khabibullin's conjecture for integral inequalities, Electronic archive http://arXiv.org, 2010, 1008.1572 [math.CA], 1-7.
83. Sharipov R. A., A counterexample to Khabibullin's conjecture for integral inequalities, Electronic archive http://arXiv.org, 2010, 1008.2738 [math.CA], 1-10.

84. Sharipov R. A., A note on a perfect Euler cuboid, Electronic archive http://arXiv.org, 2011, 1104.1716 [math.NT], 1-8.
85. Sharipov R. A., A note on the Sopfr(n) function, Electronic archive http://arXiv.org, 2011, 1104.5235 [math.NT], 1-7.
86. Sharipov R. A., Perfect cuboids and irreducible polynomials, Electronic archive http://arXiv.org, 2011, 1108.5348 [math.NT], 1-8.
87. Sharipov R. A., A note on the first cuboid conjecture, Electronic archive http://arXiv.org, 2011, 1109.2534 [math.NT], 1-6.
88. Sharipov R. A., A note on the second cuboid conjecture. Part I, Electronic archive http://arXiv.org, 2012, 1201.1229 [math.NT], 1-10.
89. Sharipov R. A., A note on the third cuboid conjecture. Part I, Electronic archive http://arXiv.org, 2012, 1203.2567 [math.NT], 1-34.
90. Sharipov R. A., Perfect cuboids and multisymmetric polynomials, Electronic archive http://arXiv.org, 2012, 1205.3135 [math.NT], 1-12.
91. Sharipov R. A., On an ideal of multisymmetric polynomials associated with perfect cuboids, Electronic archive http://arXiv.org, 2012, 1206.6769 [math.NT], 1-17.
92. Sharipov R. A., On the equivalence of cuboid equations and their factor equations, Electronic archive http://arXiv.org, 2012, 1207.2102 [math.NT], 1-11.
93. Sharipov R. A., A biquadratic Diophantine equation associated with perfect cuboids, Electronic archive http://arXiv.org, 2012, 1207.4081 [math.NT], 1-17.
94. Ramsden J. R., Sharipov R. A., Inverse problems associated with perfect cuboids, Electronic archive http://arXiv.org, 2012, 1207.6764 [math.NT], 1-11.
95. Sharipov R. A., On a pair of cubic equations associated with perfect cuboids, Electronic archive http://arXiv.org, 2012, 1208.0308 [math.NT], 1-15.
96. Sharipov R. A., On two elliptic curves associated with perfect cuboids, Electronic archive http://arXiv.org, 2012, 1208.1227 [math.NT], 1-11.
97. Ramsden J. R., Sharipov R. A., On singularities of the inverse problems associated with perfect cuboids, Electronic archive http://arXiv.org, 2012, 1208.1859 [math.NT], 1-6.
98. Ramsden J. R., Sharipov R. A., On two algebraic parametrizations for rational solutions of the cuboid equations, Electronic archive http://arXiv.org, 2012, 1208.2587 [math.NT], 1-17.
99. Sharipov R. A., A note on solutions of the cuboid factor equations, Electronic archive http://arXiv.org, 2012, 1209.0723 [math.NT], 1-15.
100. Sharipov R. A., A note on rational and elliptic curves associated with the cuboid factor equations, Electronic archive http://arXiv.org, 2012, 1209.5706 [math.NT], 1-15.
101. Ramsden J. R., Sharipov R. A., Two and three descent for elliptic curves associated with perfect cuboids, Electronic archive http://arXiv.org, 2013, 1303.0765 [math.NT], 1-37.

102. Sharipov R. A., A model with two quantum particles similar to the hydrogen atom, Electronic archive http://arXiv.org, 2013, 1308.0221 [quant-ph], 1-11.

103. Sharipov R. A., Clusters of exponential functions in the space of square integrable functions, Electronic archive http://arXiv.org, 2014, 1410.7202 [math.FA], 1-8.
104. Sharipov R. A., On root mean square approximation by exponential functions, Electronic archive http://arXiv.org, 2014, 1411.2467 [math.CA], 1-6.
105. Sharipov R. A., On a problem associated with approximation by exponential functions, Ufa Math. Journal, 7(2015), No. 1, 86-97.

106. Masharov A. A., Sharipov R. A., A strategy of numeric search for perfect cuboids in the case of the second cuboid conjecture, Electronic archive http://arXiv.org, 2015, 1504.07161 [math.NT], 1-21.
107. Sharipov R. A., Reverse asymptotic estimates for roots of the cuboid characteristic equation in the case of the second cuboid conjecture, Electronic archive http://arXiv.org, 2015, 1505.00724 [math.NT], 1-17.
108. Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the linear region, Electronic archive http://arXiv.org, 2015, 1505.02745 [math.NT], 1-17.
109. Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the nonlinear region, Electronic archive http://arXiv.org, 2015, 1506.04705 [math.NT], 1-24.
110. Sharipov R. A., Asymptotic approach to the perfect cuboid problem, Ufa Math. Journal, 7(2015), No. 3, 100-113.

111. Sharipov R. A., A note on invertible quadratic transformations of the real plane, Electronic archive http://arXiv.org, 2015, 1507.01861 [math.AG], 1-21.
112. Sharipov R. A., On some higher degree sign-definite multivariate polynomials associated with definite quadratic forms, Electronic archive http://arXiv.org, 2015, 1507.05056 [math.AG], 1-5.
113. Sharipov R. A., On positive bivariate quartic forms, Electronic archive http://arXiv.org, 2015, 1507.07125 [math.AG], 1-14.
114. Sharipov R. A., Multiple discriminants and critical values of a multivariate polynomial, Electronic archive http://arXiv.org, 2015, 1508.00551 [math.AG], 1-10.
115. Sharipov R. A., On quartic forms associated with cubic transformations of the real plane, Electronic archive http://arXiv.org, 2015, 1508.03005 [math.AG], 1-10.
116. Sharipov R. A., A rough classification of potentially invertible cubic transformations of the real plane, Electronic archive http://arXiv.org, 2015, 1508.04703 [math.AG], 1-8.

117. Gallyamov R. R., Kadyrov I. R., Kashelevskiy D. D., Kutlugallyamov N. G., Sharipov R. A., A fast modulo primes algorithm for searching perfect cuboids and its implementation, Electronic archive http://arXiv.org, 2016, 1601.00636 [math.AG], 1-11.
118. Sharipov R. A., On Walter Wyss's no perfect cuboid paper, Electronic archive http://arXiv.org, 2017, 1704.00165 [math.NT], 1-44.

119. Sharipov R. A., Comparison of two classifications of a class of ODE's in the case of general position, Electronic archive http://arXiv.org, 2017, 1704.05022 [math.CA], 1-17.
120. Sharipov R. A., Comparison of two classifications of a class of ODE's in the first case of intermediate degeneration, Electronic archive http://arXiv.org, 2017, 1705.01928 [math.CA], 1-26.
121. Sharipov R. A., Umbilical and zero curvature equations in a class of second order ODE's, Electronic archive http://arXiv.org, 2017, 1705.06389 [math.CA], 1-19.

122. Sharipov R. A., Tetrahedral discretizations of the Schrodinger operator for the purposes of quantum chemistry, Electronic archive http://viXra.org, 2018, 1808.0202 [Functions and Analysis], 1-35.
123. Sharipov R. A., On simultaneous approximation of several eigenvalues of a semi-definite self-adjoint linear operator in a Hilbert space, Electronic archive http://arXiv.org, 2019, 1902.06722 [math.ST], 1-10.

124. Ageev O. V., Sharipov R. A., On linear regression in three-dimensional Euclidean space, Electronic archive http://arXiv.org, 2019, 1907.06009 [cs.CG], 1-4.
125. Ageev O. V., Sharipov R. A., On cylindrical regression in three-dimensional Euclidean space, Electronic archive http://arXiv.org, 2019, 1908.02215 [cs.CG], 1-10.

126. Sharipov R. A., On upper limits for the height of inflated towers, Electronic archive https://vixra.org, 2020, 2008.0185 [Classical Physics], 1-18.

127. Sharipov R. A., Multiple discriminants and extreme values of polynomials in several variables, Journal of Mathematical Sciences, 2020, V. 245, No. 1, P. 89-97.

128. Sharipov R. A., On a simplified version of Hadamard's maximal determinant problem, Electronic archive http://arXiv.org, 2021, 2104.01749 [math.NT], 1-6.
129. Sharipov R. A., Hadamard matrices in {0,1} presentation and an algorithm for generating them, Electronic archive http://arXiv.org, 2021, 2105.01485 [math.CO], 1-12.
130. Sharipov R. A., Pseudo-Hadamard matrices of the first generation and an algorithm for producing them, Electronic archive http://arXiv.org, 2021, 2105.08974 [cs.DS], 1-9.

131. Sharipov R. A., Symmetry-based approach to the problem of a perfect cuboid, Journal of Mathematical Sciences, 2021, V. 252, No. 2, P. 266-282.

132. Sharipov R. A., Evolution patterns in Collatz problem, Electronic archive http://arXiv.org, 2022, 2202.04441 [math.GM], 1-10.

133. Sharipov R. A., A note on electromagnetic energy in the context of cosmology, Electronic archive https://vixra.org, 2022, 2207.0092 [Relativity and Cosmology], 1-11.
134. Sharipov R. A., A three-dimensional brane universe in a four-dimensional spacetime with a Big Bang, Electronic archive https://vixra.org, 2022, 2207.0173 [Relativity and Cosmology], 1-10.
135. Sharipov R. A., Lagrangian approach to deriving the gravity equations for a 3D-brane universe, Electronic archive https://vixra.org, 2023, 2301.0033 [Relativity and Cosmology], 1-12.
136. Sharipov R. A., Hamiltonian approach to deriving the gravity equations for a 3D-brane universe, Electronic archive https://vixra.org, 2023, 2302.0120 [Relativity and Cosmology], 1-21.
137. Sharipov R. A., Energy conservation law for the gravitational field in a 3D-brane universe, Electronic archive https://vixra.org, 2023, 2303.0123 [Relativity and Cosmology], 1-12.
138. Sharipov R. A., Speed of gravity can be different from the speed of light, Electronic archive https://vixra.org, 2023, 2304.0225 [Relativity and Cosmology], 1-18.
139. Sharipov R. A., On superluminal non-baryonic matter in a 3D-brane universe, Electronic archive https://vixra.org, 2023, 2305.0113 [Relativity and Cosmology], 1-7.

140. Sharipov R. A., 3D-brane gravity without equidistance postulate, Electronic archive https://vixra.org, 2023, 2306.0104 [Relativity and Cosmology], 1-14.
141. Sharipov R. A., Lagrangian approach to deriving the gravity equations in a 3D-brane universe without equidistance postulate, Electronic archive https://vixra.org, 2023, 2307.0039 [Relativity and Cosmology], 1-18.
142. Sharipov R. A., Superluminal non-baryonic particles in a 3D-brane universe without equidistance postulate, Electronic archive https://vixra.org, 2023, 2307.0072 [Relativity and Cosmology], 1-11.
143. Sharipov R. A., Energy conservation law for the gravitational field in a 3D-brane universe without equidistance postulate, Electronic archive https://vixra.org, 2023, 2308.0175 [Relativity and Cosmology], 1-20.

144. Sharipov R. A., Decay of a superbradyon into a baryonic particle and its antiparticle, Electronic archive https://vixra.org, 2024, 2403.0041 [Relativity and Cosmology], 1-8.
145. Sharipov R. A., Relativistic hardening and softening of fast moving springs, ResearchGate network https://www.researchgate.net, 2024, № 379537924 [Relativity and Cosmology], 1-7.

Books.

This resource was initially placed at
http://www.geocities.com/r-sharipov/e4-b.htm

1. Sharipov R. A., Theory of representations of finite groups, Bash-NII-Stroy, Ufa, 1995 (both English and Russian versions are now available on-line).
2. Sharipov R. A., Course of linear algebra and multidimensional geometry, Bashkir State University, Ufa, 1996, (both English and Russian versions of the book are now available on-line).
3. Sharipov R. A., Course of differential geometry, Bashkir State University, Ufa, 1996 (both English and Russian versions of the book are now available on-line).
4. Sharipov R. A., Classical electrodynamics and theory of relativity, Bashkir State University, Ufa, 1996 (both English and Russian versions of the book are now available on-line).
5. Sharipov R. A. Foundations of geometry for university students and high-school students, Bashkir State University, 1998 (both English and Russian versions of the book are now available on-line).
6. Sharipov R. A. Quick introduction to tensor analysis, free on-line textbook, 2004 (both English and Russian versions are now available).
7. Sharipov R. A. Course of analytical geometry, Bashkir State University, 2010 (both English and Russian versions are now available).
8. Sharipov R. A., 3D-brane universe model, 2024 (electronic book in Russian).
Site is created in uCoz